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ABSTRACT 

 

INVESTIGATION ON IONICITY AND ITS EFFECT ON CHARGE 

CARRIER SELECTIVITY FOR N-TYPE CRYSTALLINE SILICON 

SOLAR CELLS 

 

 

 

Eldeeb, Basil 

Master of Science, Physics 

Supervisor : Prof. Dr. Raşit Turan 

 

 

August 2022, 86 pages 

 

 

Optoelectronic device performance is not exactly governed by the band alignment 

between two materials. Interfacial layers in combination with a metal cap dictate 

charge-carrier selectivity and hence semiconductor device performance. Considering 

the investigations done on a wide array of solid-state surfaces and heterojunctions 

done both experimentally and theoretically, it is found that the electron localizability, 

which is quantifiable through the bandgap energy and band width, plays an integral 

role in the degree of obeying the Schottky-Mott rule and hence the optoelectronic 

properties of interfaces. By proposing and utilizing novel ionic crystals (NaF and 

NaCl) as ultrathin interfacial layers between Aluminum and n-type silicon, we 

demonstrate Fermi-level unpinning and show contacts having an effect similar to 

that of heavily doping the surface of silicon. We managed to achieve 17.3% 

efficiency for NaF with suboptimal passivation. For planar interfaces, a strategy for 

contacts is proposed for enhancing electron transport across boundaries. 

 

Keywords: Ionicity, Tunneling, Charge-carrier-selectivity, Schottky barrier.
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ÖZ 

 

N-TİPİ KRİSTAL SİLİKON GÜNEŞ HÜCRELERİ İÇİN İYONİKLİK VE 

YÜK TAŞIYICI SEÇİMİ ÜZERİNE ETKİSİNİN İNCELENMESİ 

 

 

 

Eldeeb, Basil 

Yüksek Lisans, Fizik 

Tez Yöneticisi: Prof. Dr. Raşit Turan 

 

 

Ağustos 2022, 86 sayfa 

 

Optoelektronik cihaz performansı, iki malzeme arasındaki bant hizalaması 

tarafından yönetilir. Metal bir kapak ile birlikte arayüzey katmanları, yük taşıyıcı 

seçiciliğini ve dolayısıyla yarı iletken cihaz performansını belirler. Hem deneysel 

hem de teorik olarak çok çeşitli katı hal yüzeyleri ve heteroeklemler üzerinde yapılan 

araştırmalar göz önüne alındığında, bant aralığı enerjisi ve bant genişliği ile 

ölçülebilen elektron yerelleştirilebilirliğinin, kurallara uyma derecesinde ayrılmaz 

bir rol oynadığı bulunmuştur. Schottky-Mott kuralı ve dolayısıyla arayüzlerin 

optoelektronik özellikleri. Alüminyum ve n-tipi silikon arasında ultra ince ara yüzey 

katmanları olarak yeni iyonik kristalleri (NaF ve NaCl) önererek ve kullanarak, 

Fermi düzeyinde sabitlemeyi ve silikon yüzeyini yoğun bir şekilde dopinge benzer 

bir etkiye sahip temasları gösterdik. Optimalin altında pasifleştirme ile NaF için 

%17,3 verimlilik elde etmeyi başardık. Düzlemsel arayüzler için, sınırlar arasında 

elektron taşınmasını arttırmak için temaslar için bir strateji önerilmiştir. 

 

Anahtar Kelimeler: İyoniklik, Tünelleme, Yük taşıyıcı seçicilik, Schottky engeli. 
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هِ منَِ الش َّ  جِيمِ أَعوُذُ باِلل َّ يطاَنِ الر َّ  

 

هِ  لْحمَْدُ ٱ مـَٰوََٰتِ ٱخلَقََ  ل َّذىِٱللِ َّ لمُـَٰتِ ٱوجََعلََ  لْأَرْضَ ٱوَ  لس َّ ورَ ٱوَ  لظ ُّ     ۖلن ُّ

ْ  ل َّذيِنَ ٱثمُ َّ  هِمِْ يعَدْلِوُن كَفرَوُا بَ  برِ  

[ 1 : الأنعام ]



 

 

viii 

 

 

ACKNOWLEDGMENTS 

 

First and foremost, I would like to thank my family for financing my existence, 

raising me, and supporting me in hardship and wealth. The debt that I owe you is 

unfathomable. May Allah assist me in paying some of it and in making you proud. 

I would like to thank Prof. Dr. Rasit Turan for supporting my work and advising me 

on the various issues I faced throughout the MSc program both academic and 

personal. I would like to thank my supervisor Dr. Hisham Nasser, Dr. İbrahim Murat 

Öztürk, Dr. Mona Zolfaghari Borra, Konstantin Tsoi, and Tunç Bektaş, for teaching 

me how to use the various tools and chemical processes I needed to better my 

understanding of semiconductor technology. 

I would like to thank Ahmed Halawa, Ahmed Sameh Saafan, Batuhan Erol, Loay 

Akmal Madbouly, Mohamed Adli Ayesh, Omar Mustafa Qawas, and Tarek Elsebaei 

for encouragement, support, and philosophical discussions that helped me push 

through and widen my perspective on (meta)physical matters. 

This work was partially funded by Scientific and Technological Research Council of 

Turkey (TUBITAK) under grant number 119N339.



 

 

ix 

 

 

TABLE OF CONTENTS 

 

ABSTRACT .............................................................................................................. v 

ÖZ ............................................................................................................................ vi 

ACKNOWLEDGMENTS ..................................................................................... viii 

TABLE OF CONTENTS ......................................................................................... ix 

CHAPTERS 

1 INTRODUCTION ............................................................................................ 1 

1.1 Solids .............................................................................................................. 3 

1.2 Junctions ......................................................................................................... 4 

1.2.1 The PN Junction ......................................................................................... 4 

1.2.2 The Metal/Semiconductor (MS) Junction: ................................................. 4 

2 THEORY & LITERATURE REVIEW ............................................................ 7 

2.1 Theory ............................................................................................................ 8 

2.1.1 Modelling Solids ........................................................................................ 8 

2.1.2 Modelling Surfaces ................................................................................... 19 

2.2 Literature Review ......................................................................................... 32 

2.2.1 MS Interfaces ........................................................................................... 32 

2.2.2 Surfaces and Interfaces ............................................................................. 35 

3 INSTRUMENTS AND MEASURING TECHNIQUES ................................ 39 

3.1 Deposition Techniques ................................................................................. 39 

3.1.1 Physical Vapor Deposition (PVD) ........................................................... 39 



 

 

x 

 

 

3.2 Characterization Techniques ........................................................................ 40 

3.2.1 Spectroscopic Ellipsometry ...................................................................... 40 

3.2.2 X-Ray Diffraction (XRD) ......................................................................... 47 

3.2.3 Dark Current-Voltage (I-V) ...................................................................... 47 

3.2.4 1-Sun and External Quantum Efficiency (EQE) ....................................... 54 

4 RESULTS & DISCUSSION ........................................................................... 55 

4.1 Experimental Results .................................................................................... 55 

4.1.1 XRD .......................................................................................................... 55 

4.1.2 Dark I-V measurements ............................................................................ 58 

4.1.3 Charge-Carrier Selectivity ........................................................................ 61 

4.1.4 Contact Resistivity Measurement ............................................................. 62 

4.1.5 EQE and 1-Sun Results ............................................................................. 63 

4.2 Discussion ..................................................................................................... 65 

5 CONCLUSION ............................................................................................... 71 

REFERENCE .......................................................................................................... 75 

 



 

 

1 

 

CHAPTER 1  

1 INTRODUCTION 

Electric phenomenon, arguably, was first mentioned in writing by the ancient Greeks 

in its electrostatic form: rubbing amber (called electron in ancient Greek) against 

animal fur later causes the amber to attract certain objects like feathers. Even the 

sun’s name in ancient Greek was elector; now, we are researching how to maximize 

our cultivation of electricity from Elector. Almost concurrently, magnetic 

phenomenon was first mentioned by Thales of Miletus (south of present-day Izmir, 

Turkey) around 600 B.C.. Almost two thousand years later, before Newton’s 

invention/use of mathematics to predict Halley’s comet’s trajectory, W. Gilbert 

started studying amber and electricity and others studied the lodestone [1]. After 

almost three centuries of observations and experimentation, J.C. Maxwell had 

established that any electromagnetic phenomenon can be described by five simple 

equations (the, famously named, Maxwell’s equations and the Lorentz force 

equation) and the fact that light is an electromagnetic phenomenon. Around the same 

time, rectifying current response to electric potential difference was discovered by 

F. Braun [2]. 

In 1905, Albert Einstein used Max Planck’s concept of quantization of energy, that 

solved the UV catastrophe, to explain the photoelectric effect, revealing the quantum 

nature of electromagnetic phenomena. Soon after, quantum mechanics was used to 

describe other macroscopic phenomena, including the rectifying current response, 

that cannot be explained by classical statistical mechanics.  

Till the advent of quantum mechanics, the only manner by which electricity was  

generated was through exhausting an exothermic fuel to evaporate water where the 

vapor is used to constantly change a strong magnet’s relative position (flux density) 
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to wires such that the change in flux results in an electric current, inspired by 

Faraday’s observations. Using quantum mechanics, we can understand the behaviour 

of electrons such that we can generate electricity by placing a sub-millimeter “slab” 

(solar cell) under the sun. The question becomes: how does this occur and how do 

we maximize the electricity generation and extraction? 

Classically, the discontinuity of matter gives rise to surfaces that can be described by 

boundary conditions such that the electic and magnetic fields must act accordingly 

[3]. Depending on the charge density of the matter, electromagnetic fields could 

either propagate within the material or be forbidden from moving more than a few 

nanometers, such is the case of dielectrics and metals, respectively. Which is why 

we can see through one form of matter and not the other. This was studied from a 

macroscopic perspective up to the beginning of the 20th century. The nanoscopic and 

quantum mechanical perspectives of matter and the discovery of semiconductors 

gave rise to technology as we know it. In this context, our understanding of matter 

changed.  

The main motivation behind this thesis is the fact that inserting an ultrathin (on the 

order of a few nanometers) ionic crystal between a metal and a semiconductor 

enhances the electric transport across the interface such that the configuration is 

comparable, in performance, to heavily doping the surface of Si then contacting it 

with a metal. To our knowledge, this was first demonstrated by L.S. Hung et al. in 

1997 [4]. Later, the device structure was studied under different circumstances from 

different perspectives. Afterwards, J. Bullock et al. demonstrated photovoltaic 

conversion efficiencies of 19% [5] by utilizing Al/LiFx (x < 1) and, later, 20.7% [6] 

by using, both, Al/LiFx (x < 1) and Ag/MoOx (x < 3) contacts for charge collection 

in crystalline silicon (c-Si) solar cells (without surface doping). By employing other 

contact strategies, (texturing at the front and passivation by dielectric layers) the 

efficiency reached 23% [7]. Later, researchers went in a similar direction to optimize 

contacts beyond surface doping c-Si [8]–[14].  

Thus, the concern of this thesis is to accumulate the models and studies done on 

crytalline surfaces. Another concern is to understand the effect of the arising different 
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phenomena manifesting due to contacting different crystals on the electrical 

properties of contacts with an application on silicon (Si)-based photovoltaic cells.  

1.1 Solids 

Categorizing and modelling solids started with the start of humanity. It was simple; 

mechanically, one solid broke/dented the other. Optically, one solid was shiny, the 

other was not (opaque). After millennia of investigation, we are at the stage of 

describing/categorizing solids by their electrons’ environment (work function) [15] 

( more generally, band theory). Briefly, band theory describes how discrete energy 

levels, that are found by solving the Schrodinger equation of a single electron in a 

potential well, are perturbed and split by constructing solids atom by atom [16]. 

Thus, in a solid with Avogadro’s number of atoms, each discrete level turns to a band 

of almost infinitesimally spaced levels. In some solids, bands overlap (some metals), 

and in most, they repel one another forming bandgaps. 

As the electron is categorized as a fermion, which is a particle with half-integral spin, 

it obeys Fermi-Dirac (FD) statistics. Soon after the development of FD statistics, A. 

Sommerfeld proposed to use it to describe macroscopic phenomena of metals, such 

as conductivity and heat capacitance [17]. Although, the first motivation was to 

describe metals, one could apply FD statistics to any system of electrons and ascribe 

the system a Fermi-level (FL). The FL describes the probability of electrons 

occupying energy levels below it in a continuum of allowed states. The FL of an 

intrinsic solid will always be situated near the midgap [17]. The location of the FL 

could be changed relative to its intrinsic location by doping, which is the controlled 

addition of elements either having more or less valence electrons than the host solid 

[16]. Another manner by which the FL could change its location is through defects, 

which mainly occurs at the surface [18]. 
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1.2 Junctions 

A junction, in the context of solid-state physics, is defined as the physical contact 

between two solids. When both solids are the same and differ in majority charge-

carrier concentration, the junction is referred to as a homojunction or a PN junction. 

Other junctions are referred to as heterojunctions.  

1.2.1 The PN Junction 

Starting with the simplest type of junction: two intrisically identical semiconductors 

with different doping type, (n)egative-type and (p)ositive-type. In this case, the FL 

on the p-doped side will be lower than the intrinsic level, 𝐸𝑖, while on the n-doped 

side it will be at a relatively higher position. Upon contact, thermodynamic 

equilibrium dictates that the FL be constant throughout the interface [16].  

1.2.2 The Metal/Semiconductor (MS) Junction: 

For the ideal MS junction, W. Schottky proposed that an electron would experience 

an energy barrier corresponding to the difference between the metal (M) work 

function (𝜙𝑀)  and the electron affinity (χ) of the semiconductor (S) when 

transporting from M to S such that the potential barrier that an electron experiences 

from the metal side is: 

𝜙𝐵 = 𝜙𝑀 − 𝜒 

where 𝜙𝐵 is the Schottky barrier height (SBH), this is the Schottky-Mott rule for n-

type semiconductors [16]. Under forward bias, the barrier diminishes, while in 

reverse bias, the depletion region increases in width such that it is increasingly 

difficult for electrons to cross from M to S. The formulation does not impose an 

upper limit on the size of the bandgap energy, such that it should be capable of 

describing any metal/non-metal junction. However, numerous experiments revealed 
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that the barrier is insensitive to 𝜙𝑀 and surface orientation for many semiconductors, 

especially Si and germanium (Ge) [2].  

However, as real crystals are not infinite in space, the concept of the forbidden region 

is not completely valid at the edge of a crystal where some neighbors are missing 

(technically, an infinite number of neighbors is missing, however due to screening 

effects, an ion’s perception of neighbors exponentially decays with each cascading 

neighbor). This causes some charge transfer between the surface and the bulk of the 

crystal to render the surface neutral [19]. Such effect, among others, was not 

accounted for in W. Schottky’s formulation. This is the main reason why the 

Schottky-Mott’s rule is not applicable in most interfaces. 

Since photovoltaic solar cells are PN junctions contacted with a metal, understanding 

the MS interface is paramount to maximizing the efficiency of such devices and other 

optoelectronics-based devices.   Therefore, after a literature review, we tested sodium 

chloride (NaCl) and sodium fluoride (NaF) as  interfacial layers (ILs) on different 

substrates with different metals  to gain a better understanding of what  ionic crystals 

do in such regime.  We observed  Fermi level unpinning  when using such layers 

between c-Si and different metals (i.e., the thermionic barrier highly depends on the 

metal’s work function).  Then, we measured the contact resistivity of  the ionic 

crystals for different thicknesses, in nanometers, to see their  viability for future solar 

cell applications. LiF was studied first, to reproduce literature results, such that we 

could compare the performance of the layers in the simple contact schemes (planar 

and textured). 
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CHAPTER 2  

2 THEORY & LITERATURE REVIEW 

Although, optical and electronic properties of interfaces are the most relevant in 

device physics, they remain elusive in nature. This is reflected in the several 

proposed theories from Fowler-Nordheim theory of cold emission (Metal/Vacuum) 

[20], and its corrections for image effect [21], to Schottky/Mott models  for MS 

contacts and Bethe’s theory of thermionic emission [2] (metal/non-metal), to the 

various models that account for the lack of predictability of Schottky’s theory due to 

the Fermi level pinning (FLP) (Bardeen's interface states [18], The S-Parameter [22], 

and Metal-Induced Gap States (MIGS)) [23]. Some of these models are qualitative, 

while others are quantitative with limited success. As R. Tung mentioned (who also 

contributed with a theory of inhomogeneous barriers at the interface [24], [25]); the 

Schottky Barrier Height (SBH) is a multidisciplinary phenomenon, ranging from 

quantum mechanics to chemistry and engineering, which keeps it shrouded in 

mystery for almost a century. There are even different reports on the work function 

of noble metals e.g., for Au, in the 80s, its work function was reported as 4.7-4.8eV 

yet, currently it is reported as 5.1-5.3eV [2], [26], [27].  This, among other factors, 

further complicates the understanding of the SBH and FLP phenomena. It was 

reported that even the vacuum chamber usage history altered interface parameters 

significantly, however reproducible [28].  

As companies do not need exact physics to demonstrate and produce repeatable 

solid-state devices, especially transistors, a combination of precise calibration and a 

device construction recipe are all that is needed for technology to reach the current 

level at which we see it, as technology relies on the identical performance of billions 

of components (e.g., transistors) whose only job is either pass or block current. 
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Since Moore’s law reached its limit, the next generation devices will possess a high 

surface to volume ratio. This necessitates the exact understanding of surface 

phenomena, electronically, as their contributions to new devices will be substantial, 

especially in regard to 2D transistors [29] and spin-based devices and their 

integration with current solid-state devices within nanoscopic volumes. 

2.1 Theory 

In order to understand the phenomena occurring at the surface of matter, we ought 

to start from the ideal state of an infinite solid and then look at the surface. In order 

to do that, we must describe the environment an electron perceives in an infinite 

solid. This can be done by using the Schrödinger equation, as the electron is a 

quantum particle, with the appropriate boundary conditions. 

2.1.1 Modelling Solids 

When a solid is viewed from a classical point of view, the Drude model, it fails to 

predict many features of  almost all metals, not to mention other solids, such as: the 

sign in the Hall coefficient, mean square electronic speed, electronic contribution to 

heat capacity [17] (p.21-25). This is due to the faulty assumptions used: 

• All valence electrons are detached from the mother ion (only valid for 

metals). 

•  Ions’ role in physical phenomena is ignored, other than maintaining 

charge neutrality. 

• Electron-electron interactions are ignored. 

• Conduction electrons obey the classical Maxwell-Boltzmann statistics. 

Sommerfeld’s model used Fermi-Dirac (FD) statistics, which fixed some features. 

This quickly established the undeniable quantum nature of solids. However, since 

Sommerfeld did not change the other assumptions, it still failed to account for many 
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observations. One can see a list of failed predictions in  [17] (p.58-60). Both models 

are usually referred to as “the free electron model”.  

Seeing that the classical description fails and simply using FD statistics does not 

work for almost all solids. We need to use the Schrödinger equation. We start by 

describing how an electron is moving when it is surrounded by nothing, i.e. when an 

electron is in vacuum. The general Schrodinger equation (SE) is: 

𝐻̂𝜓 = (
𝑝̂2

2𝑚
+ 𝑈(𝒓)) 𝜓 = 𝐸𝜓 

( 2.1) 

where 𝑝̂ is the momentum operator and V is the potential, becomes 

𝐻̂𝜓 =
𝑝̂2

2𝑚
𝜓 = 𝐸𝜓 

(2.2) 

as there is no potential in vacuum. In this case, the energy of an electron is arbitrary, 

it can be moving at any speed depending on the observer. In order to describe electron 

behavior, one must properly describe the environment in which they reside which is 

summarized in the potential term U. Solids tend to form crystals, which are periodic 

structures composed of ions situated at Bravais lattice points (which are points that 

can be defined by primitve vectors, ai, and generated by translation vectors). The size 

of the crystal can vary from nanometers to centimeters, in range, all having different 

applications. Bloch’s theorem takes advantage of the structure and states that given 

a periodic potential, the electron wavefunction 𝜓, as a function of space, for all 

Bravais lattice vector R, obey: 

𝜓(𝒓 + 𝑹) = 𝜓(𝒓)𝑒𝑖𝒌.𝑹 

or 

𝜓𝑛𝒌(𝒓) = 𝑒𝑖𝒌.𝒓𝑢𝑛𝒌(𝒓)  

(2.3) 

For a given wave vector 𝒌 = 𝑥𝑖𝒃𝑖 (𝒃𝑖𝒂𝑗 = 2𝜋𝛿𝑖𝑗) where u(r) has the periodicity of 

the lattice (i.e. 𝑢𝑛𝒌(𝒓) =  𝑢𝑛𝒌(𝒓 + 𝑹)).  The index n can be understood as follows: 

as isolated atoms, having discrete electronic energy levels labeled n, are brought to 
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form a crystal, the discrete levels form a band of continuous levels, satisfying the SE 

for a given k value. When we apply Bloch’s theorem to the Born-Von Karman 

(BVK) boundary conditions:  

𝜓(𝒓 + 𝑁𝑖𝒂𝑖) = 𝜓(𝒓)  

(2.4) 

Where Ni are the number of primitive cells in each direction such that N=N1N2N3 is 

the total number of primitive cells in the volume under study. This leads us to: 

exp(𝑖𝑁𝑖𝒌. 𝒂𝑖) = 1 

(2.5) 

𝑁𝑖𝑥𝑖𝑏𝑖𝑎𝑗 = 2𝜋𝑚, where m=1,2,3,….  

𝑥𝑖 =
𝑚𝑖

𝑁𝑖
⁄   

(2.6) 

The coefficients xi show that allowed k values become continuous in the limit of 

infinite volume. Looking for the Bloch solutions to the SE for a periodic potential 

U(r) (=U(r+R)), under BVK boundary condition for a given a given k: 

𝐻𝜓𝑛𝒌 = 𝑒𝑖𝒌.𝒓𝐻𝒌𝑢𝑛𝒌(𝒓) 

(2.7) 

Where, 

𝐻𝒌𝑢𝒌(𝒓) = [
ℏ2

2𝑚
(
1

𝑖
∇ + 𝑘)

2

+ 𝑈(𝒓)]𝑢𝒌(𝒓) = 𝜀𝒌𝑢𝒌(𝒓) 

(2.8) 

Thus, for a given k there is a family of eigenvalues εn,k≡εn(k). For a given n, the 

wavefunction and eigenvalues are periodic functions of k in the reciprocal lattice 

vector (RLV) K defined by R ( K.R=2πm, where m=1,2,3,…): 

𝜓𝑛,𝒌+𝑲(𝒓) = 𝜓𝑛𝒌(𝒓) 

𝜀𝑛,𝒌+𝑲 = 𝜀𝑛𝒌  

(2.9) 

When εn is plotted against k we arrive at the band structure of the crystalline solid. 

The wavefunction obeying the BVK boundary condition can always be expanded as 

the set of all plane waves satisfying the boundary condition: 
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𝜓𝑛,𝒌(𝒓) = ∑ 𝑐𝒒𝑒𝑖𝒒.𝒓
𝒒   

(2.10) 

Where it can shown that q=k-K. The kinetic energy term gives: 

−
ℏ2

2𝑚
∇2𝜓 =

ℏ2

2𝑚
∑ (𝒌 − 𝑲)2𝑐𝒌−𝑲𝑒𝑖(𝒌−𝑲).𝒓

𝒌−𝑲   

(2.11) 

As for the periodic potential: 

𝑈(𝒓) = ∑ 𝑈𝒌𝒌 𝑒𝑖𝒌.𝒓 = ∑ 𝑈𝑲𝑒𝑖𝑲.𝒓
𝑲   

(2.12) 

As Uk  is only nonvanishing when k is a RLV. Operating with the potential on the 

wavefunction, we get: 

𝑈𝜓 = ∑ 𝑈𝑲𝑒𝑖𝑲.𝒓

𝑲

∑ 𝑐𝒌−𝑲′𝑒𝑖(𝒌−𝑲′).𝒓

𝒌−𝑲′

 

𝑈𝜓 = ∑ 𝑈𝑲𝑐𝒌−(𝑲′−𝑲)𝑒
𝑖(𝒌−(𝑲′−𝑲).𝒓

𝑲,𝒌−𝑲′

 

(2.13) 

Changing the index from K’-K to K’, the SE becomes: 

∑ 𝑒𝑖(𝒌−𝑲).𝒓{
ℏ2

2𝑚
(𝒌 − 𝑲)2𝑐𝒌−𝑲 − ∑ 𝑈𝑲′−𝑲𝑐𝒌−𝑲′

𝑲′

}

𝒌−𝑲

= ∑ 𝜀𝑐𝒌−𝑲𝑒𝑖(𝒌−𝑲).𝒓

𝒌−𝑲

 

∑ 𝑒𝑖(𝒌−𝑲).𝒓{[
ℏ2

2𝑚
(𝒌 − 𝑲)2−𝜀]𝑐𝒌−𝑲 − ∑ 𝑈𝑲′−𝑲𝑐𝒌−𝑲′𝑲′ }𝒌−𝑲 = 0   

(2.14) 

The expression within the parantheses must seperately vanish as the plane waves 

satisfying BVK form an orthogonal set. Therefore the SE in k-space for allowed k: 

[
ℏ2

2𝑚
(𝒌 − 𝑲)2−𝜀]𝑐𝒌−𝑲 − ∑ 𝑈𝑲′−𝑲𝑐𝒌−𝑲′

𝑲′

= 0 

(2.15) 

This equation is quite general, as the form of the potential is not even expressed. 

However, one can still gain insight. In the free-electron case, all UK are zero. Then 

we have: 
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[𝜀𝒌−𝑲
0 −𝜀]𝑐𝒌−𝑲 = 0  

(2.16) 

Where, 

𝜀𝒌−𝑲
0 ≡

ℏ2

2𝑚
(𝒌 − 𝑲)2  

(2.17) 

(2.17) can be regarded as the energy of a free electron moving in a Braivais lattice 

devoid of potential. (2.16) can be valid in two ways: ck-K is zero or 𝜀 = 𝜀𝒌−𝑲
0 . The 

first possibility is trivial. The latter may occur in two different ways: there is only 

one K for which 𝜀 = 𝜀𝒌−𝑲
0  is true, unless there are multiple K where  𝜀𝒌−𝑲

0  are equal. 

If there is no degeneracy, then we have: 

𝜀 = 𝜀𝒌−𝑲
0 ,   𝜓𝒌 ∝ 𝑒𝑖(𝒌−𝑲).𝒓 

(2.18) 

For the degenerate case, there is a set of RLVs K1,…,Kn all corresponding to the 

same energy. Then, the choice of cofficients ck-K becomes arbitrary.  

Considering the case where the potential is nonzero and weak. This case corresponds 

to most metals. There will be two cases, again: 

One: where the considered energy levels are not degenerate. This can be expressed 

as follows: fix k and consider a particular RLV K1 such that the free electron energy 

𝜀𝒌−𝑲𝟏

0 is far from the values corresponding to other K compared with U: 

|𝜀𝒌−𝑲𝟏

0 − 𝜀𝒌−𝑲
0 | ≫ 𝑈, 𝑓𝑜𝑟 𝑲 ≠ 𝑲1 

Setting K=K1 in (2.15): 

[𝜀−𝜀𝒌−𝑲𝟏

0 ]𝑐𝒌−𝑲𝟏
= ∑ 𝑈𝑲−𝑲𝟏

𝑐𝒌−𝑲𝑲   

(2.19) 

Since the potential is unique up to a constant, UK can be set to zero for K=0. For 

K≠K1 we have: 

𝑐𝒌−𝑲 =
𝑈𝑲𝟏−𝑲𝑐𝒌−𝑲𝟏

𝜀 − 𝜀𝒌−𝑲
0 + ∑

𝑈𝑲′−𝑲𝟏
𝑐𝒌−𝑲′

𝜀 − 𝜀𝒌−𝑲
0

𝑲′≠𝑲𝟏

 

(2.20) 
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In the case of no near degeneracy, the denominator will always be an order of 

magnitude higher than U, thus: 

𝑐𝒌−𝑲 =
𝑈𝑲𝟏−𝑲𝑐𝒌−𝑲𝟏

𝜀−𝜀𝒌−𝑲
0 + 𝑂(𝑈2)  

(2.21) 

Plugging this into (2.19), we get: 

[𝜀−𝜀𝒌−𝑲𝟏

0 ]𝑐𝒌−𝑲𝟏
= ∑

𝑈𝑲−𝑲𝟏
𝑈𝑲𝟏−𝑲𝑐𝒌−𝑲𝟏

𝜀 − 𝜀𝒌−𝑲
0

𝑲

+  𝑂(𝑈3) 

(2.22) 

Since the Hamiltonian is real and a set of coordinates can chosen such that the crystal 

possesses inversion symmetry (𝑈(𝒓) = 𝑈(−𝒓)): 

𝑈𝑲 = 𝑈−𝑲 = 𝑈𝑲
∗  

(2.23) 

Then the energy can be expressed as: 

𝜀 = 𝜀𝒌−𝑲𝟏

0 + ∑
|𝑈𝑲−𝑲𝟏

|
2

𝜀𝒌−𝑲𝟏

0 − 𝜀𝒌−𝑲
0

𝑲

+  𝑂(𝑈3) 

(2.24) 

So up to the second order in U, the perturned energy level is shifted by a small 

negligible quantity since the potential is already taken to be weak. In the case of near 

degeneracy, we have m levels whose difference is within the first order in U, 

however, they are far from the other 𝜀𝒌−𝑲
0  on the scale of U: 

|𝜀𝒌−𝑲𝟏

0 − 𝜀𝒌−𝑲𝒊

0 | ≫ 𝑈, 𝑖 = 1, … , 𝑚, 𝑲 ≠ 𝑲𝒊  

(2.25) 

This gives rise to m equations that need to be solved, in 1D, m can be at most 2,  

however, in 3D, it can be a large number. We have: 

[𝜀−𝜀𝒌−𝑲𝒊

0 ]𝑐𝒌−𝑲𝒊
= ∑ 𝑈𝑲𝒋−𝑲𝒊

𝑐𝒌−𝑲𝒋

𝑚
𝑗=1 + ∑ 𝑈𝑲−𝑲𝒊

𝑐𝒌−𝑲𝑲≠𝑲𝟏,…,𝑲𝒎
 , 𝑖 = 1, … , 𝑚  

(2.26) 

For the remaining levels, using (2.15): 
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𝑐𝒌−𝑲 =
1

[𝜀 − 𝜀𝒌−𝑲
0 ]

(∑ 𝑈𝑲𝒋−𝑲𝒊
𝑐𝒌−𝑲𝒋

𝑚

𝑗=1

+ ∑ 𝑈𝑲′−𝑲𝒊
𝑐𝒌−𝑲′

𝑲≠𝑲𝟏,…,𝑲𝒎

) , 𝑲 ≠ 𝑲𝒊 

(2.27) 

Since 𝑐𝒌−𝑲 ∝ 𝑈 when 𝑲 ≠ 𝑲𝒊, (2.27) becomes 

𝑐𝒌−𝑲 =
1

[𝜀 − 𝜀𝒌−𝑲
0 ]

∑ 𝑈𝑲𝒋−𝑲𝒊
𝑐𝒌−𝑲𝒋

𝑚

𝑗=1

+ 𝑂(𝑈2)  

(2.28) 

Putting this in (2.22), 

[𝜀−𝜀𝒌−𝑲𝒊

0 ]𝑐𝒌−𝑲𝒊
= ∑ { 𝑈𝑲𝒋−𝑲𝒊

𝑐𝒌−𝑲𝒋

𝑚
𝑗=1 + (∑

𝑈𝑲−𝑲𝒊
𝑈𝑲𝒋−𝑲

𝜀−𝜀𝒌−𝑲
0 𝑐𝒌−𝑲𝒋

) + 𝑂(𝑈3)𝑲≠𝑲𝟏,…,𝑲𝒎
 }  

(2.29) 

The shift for the nearly degenerate case is approximately of order U, if we ignore the 

second and third terms, as they are mearly corrections. This implies that that the 

perturbed levels (an electron moving in a periodic structure relative to one that is 

moving in free space) a shifted from above and below by U: 

[𝜀−𝜀𝒌−𝑲𝒊

0 ]𝑐𝒌−𝑲𝒊
≅ ∑{ 𝑈𝑲𝒋−𝑲𝒊

𝑐𝒌−𝑲𝒋

𝑚

𝑗=1

 } 

(2.30) 

Looking at the case of m=2; the m equations reduce to:    

       [𝜀−𝜀𝒌−𝑲1

0 ]𝑐𝒌−𝑲1
≅ 𝑈𝑲2−𝑲1

𝑐𝒌−𝑲2
 

[𝜀−𝜀𝒌−𝑲2

0 ]𝑐𝒌−𝑲𝟐
≅ 𝑈𝑲1−𝑲2

𝑐𝒌−𝑲1
 

(2.31) 

Since we decided that U0=0. Using q=k-K1 and K=K2-K1 we can write the equations 

as such: 

[𝜀−𝜀𝒒
0]𝑐𝒒 ≅ 𝑈𝑲𝑐𝒒−𝑲 

[𝜀−𝜀𝒒−𝑲
0 ]𝑐𝒒−𝑲 ≅ 𝑈−𝑲𝑐𝒒 = 𝑈𝑲

∗ 𝑐𝒒 

(2.32) 

Since we are assuming that the levels are nearly degenerate, we have: 
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𝜀𝒒 − 𝜀𝒒−𝑲
0 ≅ 0, |𝜀𝒒 − 𝜀𝒒−𝑲′

0 | ≫ 𝑈, 𝑓𝑜𝑟 𝑲′ ≠ 𝑲 

(2.33) 

The assertion that only the single value of 𝑲′ = 𝑲 makes 𝜀𝒒 = 𝜀𝒒−𝑲
0  requires that 

 |𝒒| = |𝒒′| = |𝒒 − 𝑲| which is the condition for elastic scattering; squaring both 

sides: 

𝑞2 = 𝑞2 + 𝐾2 − 2𝒒. 𝑲 

𝑲. 𝑲 = 2𝒒. 𝑲 

𝑲. 𝑲̂ = 2𝒒. 𝑲̂ = 𝐾 

The condition can be written as: 

1

2
𝐾 = 𝒒. 𝑲̂ 

(2.34) 

This amounts to requiring that q lie on the Bragg plane defined by K/2. The plane is 

called a Bragg plane, because he and his son were the ones to identify enhanced 

reflections at certain angles when X-ray was directed towards macroscopically 

crystalline solids which was accounted for by regarding the crystal to be made of 

parallel planes of ions, for which he and his son received the Nobel prize. His 

formulation forms the basis for identifying crystal orientations and lattice constants 

through XRD. More on that in the related section. Equations (2.32) have a solution 

when the determinant is zero: 

|
𝜀 − 𝜀𝒒

0 −𝑈𝑲

−𝑈𝑲
∗ 𝜀 − 𝜀𝒒−𝑲

0 |=0 

(𝜀 − 𝜀𝒒
0)( 𝜀 − 𝜀𝒒−𝑲

0 ) = |𝑈𝑲|2 

𝜀2 − (𝜀𝒒
0 + 𝜀𝒒−𝑲

0 )𝜀 + 𝜀𝒒
0𝜀𝒒−𝑲

0 − |𝑈𝑲|2 = 0 

𝜀 =
(𝜀𝒒

0 + 𝜀𝒒−𝑲
0 )

2
± [

1

4
(𝜀𝒒

0 + 𝜀𝒒−𝑲
0 )

2

− (𝜀𝒒
0𝜀𝒒−𝑲

0 − |𝑈𝑲|2)]

1/2

 

𝜀 =
(𝜀𝒒

0 + 𝜀𝒒−𝑲
0 )

2
± [

1

4
(𝜀𝒒

0
2

+ 𝜀𝒒−𝑲
0 2

+ 2𝜀𝒒
0𝜀𝒒−𝑲

0 ) − 𝜀𝒒
0𝜀𝒒−𝑲

0 + |𝑈𝑲|2]

1/2
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𝜀 =
(𝜀𝒒

0+𝜀𝒒−𝑲
0 )

2
± [

1

4
(𝜀𝒒

0 − 𝜀𝒒−𝑲
0 )

2
+ |𝑈𝑲|2]

1/2

  

(2.35) 

The roots 𝜀 give the main (higher orders in U are less significant) shifts caused by 

the periodic potential on the free electron energy levels 𝜀𝒒
0 and 𝜀𝒒−𝑲

0  when q is close 

to the Bragg plane at K/2, corresponding to near degeneracy. When q is exactly on 

the Bragg plane, the free electron levels become identical and the roots become: 

𝜀 = 𝜀𝒒
0 ± |𝑈𝑲| 

(2.36) 

Such that the difference between the nearly identical levels become 2|𝑈𝑲|. This can 

be regarded as an indirect manifestation of Pauli’s exclusion principle; no two 

electrons can be in the same exact quantum state. Even nearly identical levels “repel” 

each others’ existence such that they are modified. 

 

Figure 2.1 The band structure of a 1D periodic structure. Here, we plot the 2 free electron energy levels for 

wave vectors q and q-K, signified by the dashed lines, along with the perturbed versions, signified by the solid 

lines. The inset shows the bands near degeneracy, where the potential strength is 0.1eV causing a bandgap of 

0.2eV. The energy scale is mainly dictated by the lattice constant chosen, which was 5 angstroms, so in some 

sense it is arbitrary in this demonstration of near degeneracy. 
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Looking at Figure 2.1. We see, in the inset, how the 𝜀𝒒
0 band starts deviating -around 

a difference UK from 𝜀𝒒−𝑲
0  - from a parabola, to being “deflected” by the 𝜀𝒒−𝑲

0  band 

and vice versa. As the bandstructure basically repeats itself  such that every K/2 the 

plot is mirrored, if we include levels corresponding to more RLVs such as q±2K, 

q±K, and so on. Now, the black line can be indexed with n=1 while the red one with 

n=2. Including more RLVs introduces more bands, above the 2 bands plotted. All 

the unique solutions defining the band structure ε(q) lie in the region between ±𝐊/2, 

which is what is referred to as the first Brillouin zone (1st BZ).  

The bandgap  of a crystal signifies the degree of near-degeneracy of solutions, i.e., 

how many energy eigenvalues are relatively close to each other around a given K-

value, which is related to the strength of the potential (2|𝑈𝑲|) (i.e., the stronger the 

potential the more levels that will satisfy near degeneracy). This can be seen from 

another side; as “nature” does not accept the degeneracy of fermions (Pauli’s 

exclusion principle), the solutions cannot be accessed, hence the energy region 

between a minimum of a band and the maximum of the previous band is referred to 

as the forbidden region. Therefore, the bandgap is a direct consequence of a periodic 

potential. 

In the case of 3D periodic structures, beyond translation symmetry, one can rely on 

other symmetries defined by the structure to further reduce the BZ. However, it is 

still extremely complicated to calculate the complete band structure even for the case 

of weak periodic potential. However, one can still gain intuition from 1D models, 

like the Kronig-Penney model [30] and intuition gained from it [19], [31], [32]. 

Effective Mass 

According to kaxiras we can define an effective mass through the second derivative 

of energy with respect to the wave vector [33]: 

1

𝑚⃡  𝑖𝑗
=

1

ℏ2

𝜕2ℇ

𝜕𝑘𝑖𝜕𝑘𝑗
, 

(2.37) 

for a given energy band n. The effective mass is generally expressed relative to its 

free-counterpart, i.e. the mass of an electron moving in vacuum, as in both cases they 
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can be expressed as propagating plane waves. Such quantity plays a major role in 

solid-state devices. However, the band structure problem, for real solids, becomes 

intractable in 3-D. Even though we can simplify the examined k-values through other 

symmetries, the problem arises from the potential term. Numerical methods have 

been developed to approximate the Hamiltonian to simulate real solids and generate 

their band structures for specific directions. 

Within the band gap, there lies the FL, which is a statistical measure of how many 

states are occupied at a given temperature. At T=0, by definiton, all states below the 

FL are filled, exactly, while all states above it are unoccupied. The higher the 

temperature, the more states, above the FL, are filled. Bands above the FL are usually 

called conduction bands, as electrons lying there are able conduct electricity in the 

presence of an external electric field. There is one manner by which states above FL 

can be filled, momentarily, and this is through the reception of a photon with energy 

equivalent to the bandgap energy or higher. This is the main concept around which 

all optoelectronic devices revolve, including solar cells. 

Due to the impossibility of generating analytical 𝜀 − 𝒌 relations for 3D solids no 

matter how many symmetries it contains, density functional theory (DFT) was 

developed, where the Schrödinger equation for periodic structures with symmetries 

are solved self-consistently. One of the most successful methods used for generating 

band structures is referred to as the GW method, in term of predicting the bandgap 

energy of many solids. Thus one may rely on other generated features of the band 

structure, especially the curvature around band minima and maxima to extract the 

effective masses of charge carriers. 

In real devices, a crystal is cut in planar form in a specific direction, such that when 

an external electric field is applied the electron is bound to move along the normal 

of the crystal. Thus, the band structure is reduced to a band diagram for the electron 

with an effective mass that includes correlation and/or exchange effects implicitly. 

If the effective mass is found experimentally, then it must include both correlationa 

and exchange effects. To find the best sectioning of a crystal, firstly, band diagrams 
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of single crystals are calculated numerically through DFT/GW calculations. For c-Si 

used in solar cell application, the <100> direction was found to be the most suitable. 

Later, optimum combinations of interfaces are to be investigated. P. W. Peacock and 

J. Robertson have collected and calculated several band diagrams and structures 

showing conduction band minima (CBM) and valence band maxima (VBM) for 

several semiconductors and insulators in effort to guide the search for low carrier 

loss across heterojunctions [34], [35]. However, the barriers/offsets found 

numerically do not always correspond to real devices. 

 

2.1.2 Modelling Surfaces 

As crystals are not infinite in extent, some theories were developed for different types 

of crystals to describe their surfaces. The easiest surface to model would be the 

metallic surface. Classically, metals are known to forbid electric fields from 

propagating within them. In the presence of an electric field, the metallic surface will 

respond by developing a surface charge cancelling the propagation of electric fields 

inside. This view may not be generalized due to lack of almost-free electrons in other 

solids. 

2.1.2.1 The WKB Approximation and Fowler-Nordheim Tunnelling (FNT) 

The WKB approximation deals with non-trivial potentials experienced by quantum 

particles [36]. Following Sakurai, we start from the SE with an unspecified potential 

as: 

(
𝑝̂2

2𝑚
+ 𝑈(𝒓) − 𝐸) 𝜓 = 0 
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(
−ℏ2

2𝑚

𝑑2

𝑑𝒓𝟐
+ 𝑈(𝒓) − 𝐸) 𝜓 = 0 

(2.38) 

Examining the 1D case 𝒓 → 𝑥 and defining 

𝑘(𝑥) ≡ [
2𝑚

ℏ2
(𝐸 − 𝑈(𝑥))]

1/2

 

(2.39) 

As the quantity in parenthesis can be negative, we define 

𝑘(𝑥) ≡ −𝑖𝜅(𝑥) ≡ −𝑖 [
2𝑚

ℏ2
(𝑈(𝑥) − 𝐸)]

1
2

𝑓𝑜𝑟 𝐸 < 𝑉(𝑥) 

(2.40) 

Then the SE becomes 

𝑑2𝜓

𝑑𝑥𝟐
+ [𝑘(𝑥)]2𝜓 = 0. 

(2.41 

For constant U, we get the plane-wave solutions, exp(±ikx). Assuming that U slowly 

varies with x, we try a solution in the form of a plane-wave whose wave-vector 

depends on position and has the form 𝑊(𝑥)/𝑥ℏ such that the wavefunction becomes: 

𝜓 = exp (𝑖𝑊(𝑥)
ℏ

⁄ ). 

(2.42) 

Plugging this solution in the SE and evaluating: 

𝑑2exp (
𝑖𝑊(𝑥)

ℏ
⁄ )

𝑑𝑥𝟐
+ [𝑘(𝑥)]2exp (

𝑖𝑊(𝑥)
ℏ

⁄ ) = 0 

𝑑 ((𝑖/ℏ)
𝑑(𝑊(𝑥))

𝑑𝑥
exp (

𝑖𝑊(𝑥)
ℏ

⁄ ))

𝑑𝑥
+ [𝑘(𝑥)]2 exp (𝑖𝑊(𝑥)

ℏ
⁄ ) = 0 

(
𝑖

ℏ
)

𝑑(𝑊(𝑥))

𝑑𝑥

𝑑 (exp (𝑖𝑊(𝑥)
ℏ

⁄ ))

𝑑𝑥
+ (𝑖/ℏ)

𝑑(𝑊(𝑥))

𝑑𝑥
exp (

𝑖𝑊(𝑥)
ℏ

⁄ )

+ [𝑘(𝑥)]2 exp (𝑖𝑊(𝑥)
ℏ

⁄ ) = 0 
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(
𝑖

ℏ
)

2 𝑑(𝑊(𝑥))

𝑑𝑥

𝑑(𝑊(𝑥))

𝑑𝑥
exp (

𝑖𝑊(𝑥)
ℏ

⁄ ) + (𝑖/ℏ)
𝑑2(𝑊(𝑥))

𝑑𝑥2
exp (

𝑖𝑊(𝑥)
ℏ

⁄ )

+ [𝑘(𝑥)]2 exp (𝑖𝑊(𝑥)
ℏ

⁄ ) = 0 

 

(
𝑖

ℏ
)

2

(
𝑑(𝑊(𝑥))

𝑑𝑥
)

2

+ (𝑖/ℏ)
𝑑2(𝑊(𝑥))

𝑑𝑥2
+ [𝑘(𝑥)]2 = 0 

− (
𝑑(𝑊(𝑥))

𝑑𝑥
)

2

+ (𝑖ℏ)
𝑑2(𝑊(𝑥))

𝑑𝑥2
+ ℏ2[𝑘(𝑥)]2 = 0 

(2.43) 

The concept of slow variation, within a region, can be understood by comparing the 

first and second derivative of the function: 

|
𝑑(𝑊(𝑥))

𝑑𝑥
|

2

≫ ℏ |
𝑑2(𝑊(𝑥))

𝑑𝑥2
| 

(2.44) 

Using this, we can approximate the SE to write the zeroth order approximation for 

𝑊(𝑥): 

𝑑𝑊0(𝑥)

𝑑𝑥
= ± ℏ𝑘(𝑥) 

(2.45) 

Then use it to find the first order approximation 𝑊1(𝑥): 

− (
𝑑(𝑊1(𝑥))

𝑑𝑥
)

2

+ (𝑖ℏ)
𝑑2(𝑊0(𝑥))

𝑑𝑥2
+ ℏ2[𝑘(𝑥)]2 = 0 

(
𝑑(𝑊1(𝑥))

𝑑𝑥
)

2

= ±𝑖ℏ2
𝑑(𝑘(𝑥))

𝑑𝑥
+ ℏ2[𝑘(𝑥)]2 = 0 

(2.46) 

Such that 

𝑊(𝑥) ≈ 𝑊1(𝑥) = ±ℏ ∫ 𝑑𝑥′[𝑘2(𝑥′) ± 𝑖𝑘′(𝑥′)]1/2
𝑥
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𝑊(𝑥) ≈ 𝑊1(𝑥) = ±ℏ ∫ 𝑑𝑥′[𝑘2(𝑥′) ± 𝑖𝑘′(𝑥′)]1/2
𝑥

 

(2.47) 

Given that 𝑘′(𝑥) ≪ [𝑘(𝑥)]2(∗), we can binomially expand the integrand 

𝑊1(𝑥) ≈ ±ℏ ∫ 𝑑𝑥′𝑘(𝑥′) [1 ±
𝑖𝑘′(𝑥′)

2𝑘2(𝑥′)
]

𝑥

 

𝑊1(𝑥) ≈ ℏ {
𝑖

2
ln [𝑘(𝑥)] ± ∫ 𝑑𝑥′𝑘(𝑥′)

𝑥

} 

(2.48) 

Thus, we can express the wavefunction as 

𝜓 ≈ exp (
𝑖𝑊1(𝑥)

ℏ
⁄ ) =

1

[𝑘(𝑥)]
1
2

𝑒𝑥𝑝 [±𝑖 ∫ 𝑑𝑥′𝑘(𝑥′)
𝑥

]. 

(2.49) 

We can check whether a potential is varying “slowly” enough from the first-order 

approximation. This relates the de Broglie wavelength of the particle to the variation 

of the potential [36].  

However, one may not always need to approximate the SE. Such is the case for 

constant and linear potentials [37]. Consequently, Fowler and Nordheim solved the 

SE for a triangular barrier outside a cold metal exactly [20], which is almost never 

exactly the case at interfaces of interest. However, it proves useful to understand this 

barrier and in which cases it can arise, other than cold metal/vacuum interfaces. 

Ignoring image effects, for an electronic state above the FL, the potential takes the 

form: 

𝑈(𝑥) = {
𝜙 − 𝑞𝐸𝑥 𝑓𝑜𝑟 𝑥 > 0

0 𝑓𝑜𝑟 𝑥 < 0
 

(2.50) 
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Figure 2.2 A schematic of the energy-space near the surface of a metal. On the left, the electron is bound to the 

metal but can freely move within it. Outside the metal under no electric field, the probability of finding an 

electron increases exponentially with distance, since it is practically a rectangular barrier, ignoring image 

effect. In the case of an external field, the classically forbidden region is reduced and hence the probability of 

finding an electron outside the metal is greatly enhanced. 

where, 𝜙 is the barrier height, 𝑞 is the fundamental charge of an electron, and 𝐸 is 

the applied electric field component normal to the surface (Figure 2.2). The SE takes 

the form 

𝐻𝜓 =

{
 
 

 
 (

−ℏ2

2𝑚
𝜓′′ + 𝑈(𝒓)𝜓) = 𝜀𝜓 𝑓𝑜𝑟 𝑥 > 0

−ℏ2

2𝑚
𝜓′′ = 𝜀𝜓       𝑜. 𝑤.

 

(2.51) 

With the definition 

𝑦 = (𝑥 −
(𝜙 − 𝜀)

𝐹
) (2𝑚𝐹/ℏ)1/3 

(2.52) 

The SE can be rewritten as 
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𝑑2𝜓

𝑑𝑦2
+ 𝑦𝜓 = 0 

(2.53) 

And the solution to the SE can be written in terms of Bessel functions of order 1/3: 

𝜓 = √𝑦𝐽±1
3⁄ (

2

3
𝑦

3
2⁄ ) 

(2.54) 

Requiring a travelling wave far from the interface implies using Hankel functions of 

the second kind. After requiring the continuity of the wavefunction and its first 

derivative at the interface and some mathematical manipulation, the wavefunction 

coefficients, for both regions, can be found and an expression for the current of 

electrons exiting the metal under the external field is produced: 

𝐼 =
𝑒

ℏ

𝐸2

𝜙
𝑒𝑥𝑝 (

−4

3ℏ

√2𝑚𝜙3

𝐸
⁄ ) 

(2.55) 

2.1.2.2 Frenkel-Poole Emission (FPE) and Dielectric Surfaces 

Frenkel described how, pre-breakdown, electrons in a dielectric responds to an 

electric field, explaining ionic conductivity thermodynamically [38]. In his paper, 

Frenkel describes crystals as a system of neutral atoms. For a given temperature, 

there will be ionized atoms where electrons will be “freely” swimming in the grid of 

neutral (polarizable) atoms and positive ions. As the fields of the positive ions are 

screened by the polarizable medium, the ionization energy will be reduced by a factor 

𝜀 which is the dielectric constant of the medium.  In an external field, the ionization 

energy is further reduced:  

Δ𝑈 = 𝐸𝑟0 +
𝑞

4𝜋𝜀𝑟0
 

(2.56) 



 

 

25 

Where 𝑟0 is given by 𝐸 = 𝑒
4𝜋𝜀𝑟0

2⁄  such that 

Δ𝑈 = √
𝑞𝐸

𝜋𝜀
 

(2.57) 

The ionic conductivity is assumed to be proportional to the number of free electrons 

due to the combined thermal ionization and field-assisted ionization: 

𝜎 = 𝜎0 exp (
qΔ𝑈

𝑘𝑇⁄ ) 𝛼 exp (
−𝑞(𝑈0 − Δ𝑈)

𝑘𝑇
⁄ ) 

(2.58) 

In Frenkel’s view of dielectric crystals, at T=0, the crystals are perfect in the sense 

there are no defects, and no atom is ionized, such that ionic conductivity is exactly 

zero. In this view, the proportionality becomes an equality. 

2.1.2.3 Thermionic Emission (TE) 

Although Schottky’s model of the MS interface does not predict the right value for 

SBH, Bethe’s theory of TE is still a powerful tool to characterize MS interfaces, 

where an effective barrier may be attributed to an interface constructed under certain 

parameters [2]. Starting with the main assumptions of the theory: 

• The barrier is much greater than the thermal voltage: 𝑞𝜙𝐵 ≫ 𝑘𝑇 

• Thermal equilibrium is established. 

• Existence of a net current does not affect the equilibrium. 

• Ignore the image effect. 

And  the postulate that conduction electrons’ energy is purely kinetic. Now, we may 

state that the total current density is equal to the current density of electrons going 

from semiconductor to metal (𝐽𝑠→𝑚) minus the current density going from metal to 

semiconductor (𝐽𝑚→𝑠): 
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𝐽𝑡𝑜𝑡 = 𝐽𝑠→𝑚 − 𝐽𝑚→𝑠 . 

(2.59) 

From the semiconductor’s side, the current density is equal to the number of 

electrons whose energies are enough to overcome the barrier moving towards the 

interface with velocities corresponding to their energies: 

𝐽𝑠→𝑚 = ∫ 𝑞𝑣𝑥𝑑𝑛

∞

𝜀𝐹+𝑞𝜙𝐵

, 

(2.60) 

where 

𝑑𝑛 = 𝑁(𝜀)𝐹(𝜀)𝑑𝜀 =
4𝜋(2𝑚∗)3/2

ℎ3
(𝜀 − 𝜀𝐶)1/2𝑒𝑥𝑝 (

−(𝜀 − 𝜀𝐶 + 𝑞𝑉𝑛)
𝑘𝑇

⁄ ) 𝑑𝜀 

(2.61) 

and 

𝑞𝑉𝑛 = 𝜀𝐶 − 𝜀𝐹 . 

(2.62) 

Using the postulate: 

𝜀 − 𝜀𝐶 =
1

2
𝑚∗𝑣2 

(𝜀 − 𝜀𝐶)1/2 = (
𝑚∗

2
)

1/2

𝑣  𝑎𝑛𝑑  𝑑𝜀 = 𝑚∗𝑣𝑑𝑣 

(2.63) 

Such that 

𝑑𝑛 =
4𝜋(2𝑚∗)3/2

ℎ3
(
𝑚∗

2
)

1/2

𝑣  𝑒𝑥𝑝 (
−𝑞𝑉𝑛

𝑘𝑇⁄ ) 𝑒𝑥𝑝 (−𝑚∗𝑣2

2𝑘𝑇⁄ ) 𝑚∗𝑣𝑑𝑣 
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𝑑𝑛 = 2 (
𝑚∗

ℎ
)

3

  𝑒𝑥𝑝 (
−𝑞𝑉𝑛

𝑘𝑇⁄ ) 𝑒𝑥𝑝 (−𝑚∗𝑣2

2𝑘𝑇⁄ ) 4𝜋𝑣2𝑑𝑣 

(2.64) 

Which is the number of electrons per unit volume that have speeds between 𝑣 and 

𝑣 + 𝑑𝑣 distributed over all directions. Expanding 𝑣: 

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

4𝜋𝑣2𝑑𝑣 = 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 

(2.65) 

The current 𝐽𝑠→𝑚 takes the form: 

𝐽𝑠→𝑚 = ∫ 𝑞𝑣𝑥2 (
𝑚∗

ℎ
)

3

  𝑒𝑥𝑝 (
−𝑞𝑉𝑛

𝑘𝑇⁄ ) 𝑒𝑥𝑝 (−𝑚∗𝑣2

2𝑘𝑇⁄ ) 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧

∞

𝜀𝐹+𝑞𝜙𝐵

 

= 2𝑞 (
𝑚∗

ℎ
)

3

𝑒
−𝑞𝑉𝑛

𝑘𝑇⁄ ∫ 𝑣𝑥  𝑒𝑥𝑝 (
−𝑚∗(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)
2𝑘𝑇

⁄ ) 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧

∞

𝜀𝐹+𝑞𝜙𝐵

 

= 2𝑞 (
𝑚∗

ℎ
)

3

𝑒
−𝑞𝑉𝑛

𝑘𝑇⁄ ∫ 𝑣𝑥   𝑒
−𝑚∗𝑣𝑥

2

2𝑘𝑇
⁄

𝑑𝑣𝑥 ∫ 𝑒
−𝑚∗𝑣𝑦

2

2𝑘𝑇
⁄

𝑑𝑣𝑦 ∫ 𝑒
−𝑚∗𝑣𝑧

2

2𝑘𝑇
⁄

𝑑𝑣𝑧

∞

−∞

∞

−∞

∞

𝑣0𝑥

 

(2.66) 

where 

𝑣0𝑥 = 2𝑞
(𝑉𝑏𝑖 − 𝑉)

𝑚∗⁄  

(2.67) 

And V is the applied potential across the barrier. The integrals in the y and z 

directions are in the form of the Gaussian integral ∫ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞
 with 𝑎 =

−𝑚∗

2𝑘𝑇
. 

Therefore, 
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𝐽𝑠→𝑚 = 2𝑞 (
𝑚∗

ℎ
)

3

𝑒
−𝑞𝑉𝑛

𝑘𝑇⁄ 2𝑘𝑇

𝑚∗
𝜋 ∫ 𝑣𝑥   𝑒

−𝑚∗𝑣𝑥
2

2𝑘𝑇
⁄

𝑑𝑣𝑥

∞

𝑣0𝑥

 

(2.68) 

Solving the last integral by substitution (𝑣𝑥
2 = 𝑢, 2𝑣𝑥𝑑𝑣𝑥 = 𝑑𝑢): 

∫ 𝑣𝑥   𝑒
−𝑚∗𝑣𝑥

2

2𝑘𝑇
⁄

𝑑𝑣𝑥

∞

𝑣0𝑥

=
1

2
∫  𝑒

−𝑚∗𝑢
2𝑘𝑇⁄ 𝑑𝑢

∞

𝑢=𝑣0𝑥
2

 

=
−𝑘𝑇

𝑚∗
𝑒𝑥𝑝 (

−𝑚∗𝑣2

2𝑘𝑇
)|

𝑣0𝑥

∞

 

=
𝑘𝑇

𝑚∗
𝑒𝑥𝑝 (

−𝑚∗𝑣0𝑥
2

2𝑘𝑇
) 

(2.69) 

Therefore, the current density from the semiconductor’s side is 

𝐽𝑠→𝑚 = 2𝑞 (
𝑚∗

ℎ
)

3

𝑒
−𝑞𝑉𝑛

𝑘𝑇⁄ 2𝑘𝑇

𝑚∗
𝜋

𝑘𝑇

𝑚∗
𝑒𝑥𝑝 (

−𝑚∗𝑣0𝑥
2

2𝑘𝑇
) 

𝐽𝑠→𝑚 =
4𝜋𝑚∗𝑞(𝑘𝑇)2

ℎ3
𝑒𝑥𝑝 (

−𝑞𝑉𝑛
𝑘𝑇⁄ ) 𝑒𝑥𝑝 (

−𝑚∗𝑣0𝑥
2

2𝑘𝑇
) 

(2.70) 

Where 
4𝜋𝑚∗𝑞𝑘2

ℎ3 = 𝐴∗ is defined as Richardson’s constant. Finally, we express 𝑉𝑛 and 

𝑣0𝑥 in terms of the band diagram quantities and using 𝑞𝜙𝐵 = 𝑉𝑏𝑖 + 𝑉𝑛, we reach the 

expression: 

𝐽𝑠→𝑚 = 𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞𝑉𝑛

𝑘𝑇⁄ ) 𝑒𝑥𝑝 (
−𝑞(𝑉𝑏𝑖 − 𝑉)

𝑘𝑇
) 

= 𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞(𝑉𝑏𝑖 + 𝑉𝑛 − 𝑉)

𝑘𝑇
) 
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𝐽𝑠→𝑚 = 𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞𝜙𝐵

𝑘𝑇⁄ ) 𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
) 

(2.71) 

As for the current density from the metal’s side, since the FL of metals does not 

change depending on the applied voltage, electrons going from 𝑚 → 𝑠 will always 

see the same barrier. Therefore, 

𝐽𝑚→𝑠 = 𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞𝜙𝐵

𝑘𝑇⁄ ) 

(2.72) 

Therefore, the TE current density is: 

𝐽𝑇𝐸 = 𝐽𝑠→𝑚 − 𝐽𝑚→𝑠  

𝐽𝑇𝐸 = [𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞𝜙𝐵

𝑘𝑇⁄ )] (𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
) − 1) 

(2.73) 

Where the quantity inside the square brackets is referred to as the saturation current, 

𝐽𝑠𝑎𝑡. However, in real contacts, the current does not really saturate. This is due to the 

image effect, which was neglected in the derivation. It is usually partially accounted 

for by n the ideality factor such that: 

𝐽𝑇𝐸 = 𝐽𝑠𝑎𝑡 (𝑒𝑥𝑝 (
𝑞𝑉

𝑛𝑘𝑇
) − 1) 

(2.74) 

Including the diffusion current can be summarized as an adjustment in the 

Richardson constant [2]. For n-type Si <100>, 𝐴∗ ≅ 120 𝐴. 𝐾−2. 𝑐𝑚−2 while for p-

type Si; 𝐴∗ ≅ 30 𝐴. 𝐾−2. 𝑐𝑚−2 in the typical electric field range, since it is electric 

field dependent. Such specifications contribute to the obscurity of MS barrier height 

reports, albeit not by much; ~20 𝑚𝑒𝑉 for the use of different values for the effective 

mass in Richardson’s constant. 
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2.1.2.4 The image effect 

The image effect could be thought of as one of the manners with which the 

discontinuity of matter is smoothed in space as potential fields cannot be 

discontinuous, except in electrostatics or other theoretics. The barrier (𝑞𝜙𝐵 = 𝑉𝑏𝑖 +

𝑉𝑛) used in the previous section is necessarily the reduced barrier due to the image 

effect. Since the image-effect is dependent on the applied field, the barrier reduction 

is, likewise, field dependent. The dependence on the applied field may be accounted 

for by the ad-hoc ideality factor, n. Modelling the current as such will yield an 

effectively lowered barrier [2] which is the same case for FNT  [21], [37], [39]. In 

the reverse bias, the current’s dependence on the barrier-lowering is much stronger 

than in the forward bias regime [2]. Thus, the explicit inclusion of the image-effect 

in the analysis is a must for a full characterization of the interface [40].  

 

Figure 2.3 Schematics of the image effect in the case of a metallic surface along with a band diagram 

representation of the same configuration where En  is the electric field component normal to the surface. 
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The simplest case of the image effect is the electrostatic configuration where there is 

a metallic surface with an electron, q,  being placed in front of it at distance x, normal 

to the surface (Figure 2.3). Due to the property of metals of not allowing electric 

fields to develop within them, the potential field is necessarily zero (or a constant) 

below the surface [3]. The electric field outside the metal will, then, behave as if 

there is an oppositely charged particle (hole) within the metal that seems to be located 

at the same distance from the surface. This manifests as a surface charge on the metal 

(that negate the electric field) since the image-particle is a fictitious one. Hence, the 

force that the charged particle experiences is an attractive one, towards the surface. 

The potential due to the image-particle at distance x from the surface: 

𝑈𝑖𝑚𝑎𝑔 =
𝑞

16𝜋𝜀0

1

𝑥
 

(2.75) 

In the presence of an electric field, the potential becomes: 

𝑈 =
𝑞

16𝜋𝜀0

1

𝑥
+ 𝐸𝑛𝑥 

(2.76) 

Where x is the distance between the metal and the electric field source. The amount 

by which the barrier has been lowered can be found by taking the first derivative of 

the potential and setting it to zero: 

𝑑𝑈

𝑑𝑥
= 𝐸𝑛 −

𝑞

16𝜋𝜀0

1

𝑥2
= 0 

(2.77) 

𝑥𝑚 = √
𝑞

16𝜋𝜀0𝐸𝑛
 

(2.78) 

Where 𝑥𝑚 corresponds to the place where the potential barrier is at its peak. Plugging 

it in the expression for the potential: 
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𝑈(𝑥𝑚) = Δ𝜙 =
𝑞

16𝜋𝜀0

1

𝑥𝑚
+ 𝐸𝑛𝑥𝑚 

𝑈(𝑥𝑚) = √
𝑞𝐸𝑛

16𝜋𝜀0
+ 𝐸𝑛√

𝑞

16𝜋𝜀0𝐸𝑛
= √

𝑞𝐸𝑛

4𝜋𝜀0
 

Δ𝜙 = √
𝑞𝐸𝑛

4𝜋𝜀0
 

(2.79) 

Where Δ𝜙 is the barrier reduction. Recalling the FNT barrier, which was a constant 

term plus a term linear in E. If we add this barrier lowering term to the problem, we 

will need to use the WKB approximation to find an expression for the current. 

In the case of a metal/vacuum interface, the expression for E is simply the applied 

voltage divided by the distance between the metal and electrode. On the other hand, 

in the case of a MS interface, the expression for E is not as simple. However, 

simplifying the interface by approximating it as an abrupt p++/n junction, we can 

find the electric field across the junction through Poisson’s equation [41]. 

2.2 Literature Review 

After establishing the potentially relevant theories regarding bulk properties and 

surface modelling, we examine the observations done in the literature over the last 8 

decades. Due to the huge time span of research into semiconductors, some of the 

observed phenomena was due to the primitive manufacturing procedures of devices. 

Such observations were disregarded.  

2.2.1 MS Interfaces 

Almost all MS contacts did not strictly follow Schottky’s rule and in the case of Si 

and germanium (Ge), the SBH became almost metal independent. Bardeen  [18] 
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proposed that the reason is due to the presence of states in the bandgap that are 

created due to lattice termination. Such states could be collectively thought of as an 

energy level (termed as charge neutrality level (CNL)). If the Fermi level (FL) is 

above CNL, it would mean that the surface is negatively charged, and vice versa, this 

concept was developed by Tersoff [19]. This forces the FL to be pinned near the 

CNL to achieve charge neutrality with the bulk, before contact. 

Cowley and Sze introduced the S-Parameter [22], a quantification of how strongly 

an interface obeys the Schottky-Mott rule: 

𝑆 =  
𝜕𝜙𝐵

𝜕𝜙𝑀
 

(2.80) 

This establishes a FLP scale where S = 1 corresponds to the Schottky-Mott rule (the 

Schottky limit (SL)) and S = 0 corresponds to complete pinning (the Bardeen limit 

(BL)). Simultaneously, Heine [23] proposed a semi-quantitative analysis of the 

surface states. He postulated that k-matching electronic wave functions with energies 

around the mid-gap are responsible for the FLP observed, which were later referred 

to as MIGS. This is further corroborated by the observed transition from almost 

complete pinning in the cases of elemental semiconductors (Si and Ge) to a 

weakened pinning observed in the silicides and germanides, which generally have a 

lower electronic density of states than pure metals [42]–[44]. Going along the MIGS 

analysis, one finds a simple guideline: decrease the metal’s electronic density at the 

contact to decrease the pinning effect. This is what Nishimura et al. [45] did by 

studying the Bismuth (Bi)/Si and Bi/Ge interfaces and found that Bi obeys the 

Schottky-Mott rule. This was attributed to the Bi low carrier density (~1017 𝑐𝑚−3) 

even though its work function has a comparable work function to that of aluminum 

(Al: 4.16-4.3 eV; Bi: 4.26 eV). Thus, it is proven, experimentally, that the density of 

conducting electrons on the metal side contributes to the pinning. In the same work, 

they experimented the surface orientation effect from the semiconductor side where 

they revealed some dependence. This is understandable since the orientation dictates 
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the surface density of atoms and hence electronic states [46]. Such effect was 

obscured by the pinning.  

C.A. Mead measured the barrier height of CdSxSe1-x contacted with different metals 

(e.g., Cu, Ag, Au, Pt) [47]. A transition from a metal dependent barrier height for 

pure cadmium sulfide (CdS), corresponding to the SL, to an almost independent 

barrier height for pure cadmium selenide (CdSe), corresponding to the BL. This 

transition is attributed to the high ionicity of CdS compared to CdSe, based on 

Shockley’s description of surface states in non-metals [48]. Inspired by Mead's 

experiment, Kurtin et al. [49] tried to establish the relation between the S-Parameter 

with the degree of ionicity and quantified ionicity using Pauling's electronegativity 

scale [50] Catlow et al. [51] and J. Robertson [35] have attempted to point out the 

inconsistencies accompanying the definition of ionicity and its ability to predict the 

SBH, respectively. Later, J. Robertson [35], assessed the relation between the 

extracted S-Parameter for various crystals as a function of polarizability/static 

dielectric constant, and Miedema's electronegativity scale [52] and found an 

undeniable trend. All these observations bring us to conclude that the surface states 

are controlled by the electrons wave-function with the unit cell of crystals. 

In this context, J. C. Phillips [53] and C. Falter et al. [54] defined ionicity by 

examining the orbital wavefunction of valence electrons (sp3 hybridization) and 

charge transfer between the constituent ions of different crystals, respectively. 

Interestingly, J. C. Phillips' definition coincides well with the 

polarizability/permittivity relation shown by J. Robertson [35]. The ionicity analysis 

done by J. C. Phillips shows that CdS and CdSe are somewhat ionic. This is due to 

the exclusion of d-electrons from J. C. Phillips analysis. Additionally, J. Tersoff [19] 

calculated the CNL of the surface semiconductors where he considered the creation 

of a dipole, which is associated with the gap states, generated by lattice termination.  

His values for CNL corresponded very well with where the FLP occurred in Ge and 

Si in other reports [55].  
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2.2.2 Surfaces and Interfaces 

However, the interface subtleties remain hidden, especially if it is composed of 

several layers. To reveal such subtleties, it is easier to start with the observed 

behavior of simple junctions such as Metal-Insulator (MI), MS, and Semiconductor-

Insulator (SI). Starting with the Metal/Vacuum interface, the only transport 

mechanism would be Fowler-Nordheim Tunneling (FNT) as there are no states to be 

occupied in vacuum. 

 By considering this, the set of experiments done by C. K. Perkin et al. [56] elegantly 

demonstrate the transition from defect/trap assisted transport to pure FNT in terms 

of increasing degrees of purity and order of the solution based deposited Al2Ox on a 

TaN substrate. Having prepared the flat-Al13 precursor solution, the conversion to 

Al2Ox occurs by annealing the substrate after spin-coating. In the first experiment, 

they controlled the purity of Al2Ox by varying annealing temperatures and 

monitoring the presence of H2O and NO. For nominally 9 nm thick Al2Ox capped 

with Al, the current density as a function of electric field curves shows the transition 

from Frenkel-Poole (FP) emission (TAnneal = 350 C°) to pure FNT (TAnneal = 600 C°), 

as different species desorb at different temperatures, which acted as defects.  In the 

second experiment, they controlled the purity of the precursor, such that, metal 

impurity is varied. Again, a transition from space-charge-limited conduction (SCLC) 

towards FNT was observed as metal impurities are diminished. This could be used 

to view insulators, in the nanoscopic regime, as an “effective” vacuum from the 

electrons’ perspective. 

Furthermore, several I-VII and II-VI crystals (ionic crystals) were studied 

spectroscopically under different deposition conditions. It was a common 

observation to find epitaxial growth with minimal mismatch with the substrates [57]–

[60]. Combining XPS and UPS to study the deposition process in-situ effectively 

reveals the actual band diagram. Using UPS, one could measure the FL/work 

function at the surface of a material. It was also common observation that depositing 
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ionic crystals lowered the UPS measured work function of the surface [5], [14], [58], 

[61]–[64]. 

For the case of MI interfaces, metals did not show any chemical reaction with the 

ionic crystals. However, while R. Schlaf et al. [63] were investigating LiFx deposited 

on Al and Pt, they observed a shoulder in the Al 2p signal, which is indicative of 

oxidation of Al and was attributed to the water that chemisorbed upon depositing 1Å 

of LiFx. In the same work, the thickness dependent work function of both interfaces 

was also measured and found that for Al/(3 nm) LiFx a work function of 2.5 eV and 

practically saturating at this value upon further increasing the LiFx thickness 

deposition. As for the Pt/LiFx interface, at 3 nm coverage the work function was 

found to be 3.8 eV, with no saturation observed in the measured range of depositing 

25 nm LiF. The work function seemed to be decreasing linearly for the Pt/LiFx 

interface. 

Additionally, Y. M. Wang et al. [64] deposited LiFx on Diamond with different 

surface properties (H- and O- terminated) where they found that the effective work 

function 𝜙eff of LiFx saturates at ~2.5 eV after 2.5 nm thickness. Zhengyi Sun et al. 

[26] further investigated the interface of LiFx with coinage metals where they found 

after deposition of 3 nm of LiFx on any of the considered metals (Cu, Ag, and Au), 

the 𝜙eff is ~3.8 eV. Similarly, rubidium fluoride was also shown to lower the work 

function of polycrystalline diamond [62]. 

In another work [57], CaF2 and SrF2 were deposited onto InP substrates using 

molecular beam epitaxy (MBE), at substrate temperature of 820 K, and similarly 

showed crystalline growth and lack of chemical reaction at the interface was 

confirmed. The (Ca/Sr)F2 bands were found to bend at the interface and lower the 

work function of the substrate from 4.1 to 2.7 eV for InP/CaF2 and 2.4 eV for 

InP/SrF2. Due to the chemical inertness of the interfaces and continuation of bending 

beyond the screening of the substrate, it was concluded that Frenkel defect pairs were 

responsible for the observed bending. In bulk, the defects are created in pairs to 

maintain crystal neutrality, while at the surface one type of defect is more 
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thermodynamically favorable than the other which creates a potential difference 

between surface and bulk [65]. Modelling the defect pair density as a step function 

and using independently found values of enthalpy/entropy of Frenkel defect pair 

formation, the bulk defect pair density was found to correspond to the substrate 

temperature at which deposition occurred, not room temperature at which 

measurements were collected. Unfortunately values of enthalpy/entropy of 

formation of defects are dissimilar in different sources, and in the case of entropy of 

formation information is wanting, such that one cannot specify the concentration of 

defects of such crystals, with certainty, to predict which would work better as ILs for 

c-Si [66]–[69].  

The work function discrepancy 

Since the discovery of the photoelectric effect, measurements of metal work function 

started to be complied. One might expect that due to the fact that the photoelectric 

phenomenon is a threshold phenomenon, the error in extracting the work function of 

metal surfaces would not be large and should be around the thermal voltage 

(~26 𝑚𝑒𝑉). However, a glance at literature tells us otherwise. R. Smoluchowski was 

one of the first to describe how one material can possess multiple work function 

values, due to the fact that at different lattice orientation the electron perceives 

different atomic densities [70]. Taking the surface of Au as an example. In the case 

of thermal evaporation, we expect amorphous deposition. Interestingly, single 

crystalline and polycrystalline clusters were observed in the same deposition [71].  

This is an example of how it is difficult for any exact prediction to be made  regarding 

interfaces, although reproducible.
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CHAPTER 3  

3 INSTRUMENTS AND MEASURING TECHNIQUES 

In this chapter, we discuss the tools used to construct the devices on which we 

experimented, and the tools/analyses used to characterize said devices. The Si wafers 

used in this study were purchased and later characterized by us for crystallinity and 

resistivity values. All Si wafers used for  characterization were RCA/RCA2 cleaned  

and dipped in diluted HF (to remove the native oxide) immediately before 

depositions. 

3.1 Deposition Techniques 

There are several techniques of depositing one solid onto another solid. The manner 

in which this was done changed since the time of Schottky. This may add insight as 

to why there were differences in reported values of the Schottky barrier height over 

the decades. 

3.1.1 Physical Vapor Deposition (PVD) 

There are multiple ways in which thin layers are deposited onto a substrate. In this 

thesis, thermal evaporation is used, exclusively. In thermal evaporation, the main 

idea is that solids are placed in conductive boats inside a vacuum chamber where 

pressure can go as low as 1x10-7 Torr (i.e., 1 trillionth the number of atoms in normal 

atmosphere is present in the vacuum chamber) such that once they become liquid 

they easily and controllably evaporate then adsorb to the substrate. Then, using a 

sensor based on a quartz crystal, the amount of material evaporated is monitored in 
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terms of thickness with angstrom resolution after selecting the parameters identifying 

the material (Z-ratio and density) [72]. 

3.2 Characterization Techniques 

For our study of ultrathin ILs, we require high accuracy in knowing the deposited 

thicknesses and crystallinity such that we can quantify the electrical properties of 

such layers with certainty. 

3.2.1 Spectroscopic Ellipsometry 

As we are dealing with ultrathin layers, we must cross check the accuracy of the 

quartz thickness monitor, in the vacuum chamber. The thickness monitor is set up 

with a tilt, slightly far from the sample holder. This causes it to be at the edge of the 

“vapor” and hence will not report the exact thickness of deposition. Using 

spectroscopic ellipsometry, one can measure thicknesses with a resolution of few 

angstroms. Thus, basic knowledge on how it operates is integral to the process of 

quantifying the effects that the ILs have in the MIS geometry. 

The basic principle of spectroscopic ellipsometry is using linearly polarized light to 

investigate the properties of thin films by analyzing the reflected/transmitted light.  

Since the sample’s thickness, refractive index, and extinction coefficient uniquely 

alter the incident electromagnetic wave (light), for a given incident angle and 

wavelength. Upon irradiating the sample with linearly polarized light the reflected 

light becomes elliptically polarized, almost always, hence the name of the technique. 

The reflected light is compared to the incident one in terms of phase difference (Δ) 

and the amplitude ratio (𝜓) of (p)arallel-polarized light and (s)urface-polarized light. 

The measurement sensitivity is maximized when the incident light is at the Brewster 

angle dictated by the sample, where the ratio between p-polarized light and s-

polarized light is maximized. Since we are dealing with c-Si, the incidence angle 

should be around 73° [73]. 
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Upon retrieving 𝜓 and Δ, we can find the refractive index (n) from 𝜓 and the 

extinction coefficient (k) from Δ using the Fresnel equations defining the reflection 

coefficients; the ratio of reflected s-polarized (𝑟𝑠) and p-polarized (𝑟𝑝) light to the 

incident light (𝑟𝑝 is essentially the same): 

𝑟𝑠 ≡
𝐸𝑟

𝐸0
=

𝑛𝑐𝑜𝑠𝜃 − 𝑛′𝑐𝑜𝑠𝜃′

𝑛𝑐𝑜𝑠𝜃 + 𝑛′𝑐𝑜𝑠𝜃′
 

( 3.1) 

Where 𝑛 is simply 1 for air and 𝑛′ is that of the sample, 𝜃 and  𝜃′ are incident angle 

and transmittance angle, respectively, and 𝐸0 is the incident electric field component 

(s- or p-polarized). 

 

Figure 3.1 Electric field components at the boundary defined by a discontinuity in the refractive index. 

Equation (3.1) can be derived by imposing the appropriate boundary conditions on 

the electric field components. From the definition of the electric and magnetic fields, 

the tangential components (𝐸∥ and 𝐻∥) and the normal component (𝐷⊥ and 𝐵⊥) are 

continuous, such that the boundary conditions at the interface are [3]: 

[(𝐸0
     + 𝐸𝑟

     ) − 𝐸0
′     ] × 𝑛̂ = 0 , (𝐸∥ 𝑐𝑜𝑛𝑡. ) 

( 3.2) 
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[𝜀(𝐸0
     + 𝐸𝑟

     ) − 𝜀′𝐸0
′     ] . 𝑛̂ = 0 , (𝐷⊥ cont. )  

( 3.3) 

[
1

𝜇
(𝑘  × 𝐸0

     + 𝑘𝑟
     × 𝐸𝑟

     ) −
1

𝜇′
𝑘′    × 𝐸0

′     ] × 𝑛̂ = 0 , (𝐻∥  cont. ) 

( 3.4) 

(𝑘  × 𝐸0
     + 𝑘𝑟

     × 𝐸𝑟
     − 𝑘′    × 𝐸0

′     ) . 𝑛̂ = 0 , (𝐵⊥ cont. ) 

( 3.5) 

Where 𝑛̂ is a unit vector normal to the surface. First, we consider when the electric 

field component is perpendicular to the plane of incidence (defined by the 

wavevector 𝑘   and 𝑛̂, and labelled s-polarized). Along with the reasonable 

approximation that the relative permeabilities of air and our layers are 1, it can be 

shown that the ratio between the reflected and incident is (3.1). Using conditions 

(3.2) and (3.4): 

𝐸0 + 𝐸𝑟 − 𝐸0
′ = 0 

( 3.6) 

√
𝜀

𝜇
(𝐸0 − 𝐸0

′′)𝑐𝑜𝑠𝜃 − √
𝜀′

𝜇′
𝐸0

′𝑐𝑜𝑠𝜃′ = 0 

( 3.7) 

Such that, 

√
𝜀

𝜇
(𝐸0 − 𝐸𝑟)𝑐𝑜𝑠𝜃 − √

𝜀

𝜇
(𝐸0 + 𝐸𝑟)𝑐𝑜𝑠𝜃′ = 0 

𝐸0 = 𝐸𝑟

√𝜀0𝜇0 (
𝑛
𝜇 𝑐𝑜𝑠𝜃 −

𝑛′

𝜇′ 𝑐𝑜𝑠𝜃′)

√𝜀0𝜇0 (
𝑛
𝜇 𝑐𝑜𝑠𝜃 +

𝑛′

𝜇′ 𝑐𝑜𝑠𝜃′)
≅ 𝐸𝑟

(𝑛𝑐𝑜𝑠𝜃 − 𝑛′𝑐𝑜𝑠𝜃′)

(𝑛𝑐𝑜𝑠𝜃 + 𝑛′𝑐𝑜𝑠𝜃′)
 

( 3.8) 
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For the p-polarized component, we use the other two boundary conditions and find 

that the refractive indices are interchanged in equation (3.1) (i.e., 𝑛 takes the place 

of 𝑛′ and vice versa). Next, we can compute (n, k) through the definition (in the 

reflection regime): 

𝜌 ≡ tan (𝜓)𝑒𝑖Δ ≡
𝑟𝑠
𝑟𝑝

 

( 3.9) 

 

Figure 3.2 Schematic of incident linearly polarized light and reflected elliptically polarized light. Retrieved 

from [73]. 

The equations for the reflection coefficients (𝑟𝑠 and 𝑟𝑝) are slightly different when 

analyzing a thin layer on top of a substrate, where the transmitted light from the layer 

of interest reflects at the boundary (between it and that of the substrate) and 

contributes to the measured reflected light, with a phase difference. This phase 

difference is how we can measure the thickness of the thin film. Coupling our 

knowledge of the substrate’s complex refractive index with the measured (𝜓 and Δ), 

we can determine the thickness of the ultrathin layer [73]. 
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Figure 3.3 Electric field components of the primary and secondary beam when considering thin film 

interference. 

In Figure 3.3, we see the primary reflected beam (𝐸  𝑟,0) and the secondary one (𝐸  𝑟,1). 

From the figure, for a given wavelength 𝜆, the optical path difference between the 

primary beam and the secondary one amounts to: 

𝛼 =
4𝜋𝑑𝑛′

𝜆
𝑐𝑜𝑠𝜃′ 

( 3.10) 

Which introduces a phase difference (𝑒−𝑖𝛼) that either causes constructive or 

destructive interference with the primary beam. With each successive reflection from 

the thin film/substrate interface, higher order reflections diminish while picking up 

cascaded phase difference. Thus, including the contribution of all reflections coming 

from the thin film/substrate interface, the total reflected ratio is [73]: 

𝑟 =
𝐸𝑟,0 + 𝐸𝑟

′𝑒−𝑖𝛼

1 + 𝐸𝑟,0𝐸𝑟
′𝑒−𝑖𝛼

 

( 3.11) 

Where 𝐸𝑟,0 is that of the previous analysis (𝐸𝑟), and  

𝐸  𝑟
′ =

𝑛′𝑐𝑜𝑠𝜃′ − 𝑛′′𝑐𝑜𝑠𝜃′′

𝑛′𝑐𝑜𝑠𝜃′ + 𝑛′′𝑐𝑜𝑠𝜃′′
 

( 3.12) 
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For s-polarized light. Again, the refractive indices are interchanged for p-polarized 

light. Since the substrate is Si and its extinction coefficient is nonzero in the range of 

analysis (1.23 − 4.29 𝑒𝑉), the complex nature of the refractive index must be used 

in the expressions. 

As an example, we show the results of the analysis of one of our layers (NaF) under 

study (Figure 3.4). We have deposited 250 Å of NaF on a clean Si substrate, 

according to the quartz sensor. The analysis (angle of incidence= 70°) shows that 

approximately 272 Å were deposited. Another deposition (not shown) was done for 

reproducibility, where the layer was found to be 258 Å. Taking the average, the 

results tell us that for every angstrom claimed (by the sensor) to be deposited,  1.06 Å 

is actually deposited. The refractive index found in the analysis matched that of 

literature, almost exactly (difference ~0.005 at 𝜆 = 632 𝑛𝑚) [74][75]. This 

difference could be due to a combination of the relaxation at the interface and the 

error in the measurements in the literature values (±0.008) [75]. However, it is too 

small for any conclusions to be made, other than that we have NaF. 
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Figure 3.4 In the upper graph, we have the measured values of psi and delta along with their fit using the 

Caushy model. Using these values along with the expected contribution from the Si substrate, the refractive 

index and extinction coefficent of our thin film is found. 
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3.2.2 X-Ray Diffraction (XRD) 

Returning to the concept of XRD, we recall how Bragg observed unique X-ray 

reflection patterns from macroscopically crystalline solids. His formulation led to the 

characterization crystallinity of solids; from how many orientations there are in a 

poly-crystalline solid to the lattice constant of powders. W.L. Bragg considered the 

crystal as composed of evenly spaced parallel planes of ions where reflection peaks 

occur at the same angle of incidence (specular reflection) when the reflected ray 

constructively interfere with a reflected ray from the adjacent plane. The angle at 

which this peak occurs corresponds to the wavelength of the incident ray and the 

spacing between crystal planes. The condition for constructive interference is that 

the path difference of the rays is an integer multiple of the wavelength. Thus, for a 

given set of planes separated by distance d, the “Bragg” condition is: 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

(3.13) 

Where 𝜃 is the incident angle which is conventionally measured from the surface 

plane as opposed to the normal plane in optics (previous section). Another physicist, 

Von Laue, similarly formulated the diffraction of X-rays, by considering the crystal 

to be composed of evenly spaced ions in a Bravais lattice. His conclusion was the 

same, minus the assumption of specular reflection [17]. Thus, scanning for the angle 

at which reflection peaks occur will provide us with the interatomic spacing. 

Learning the interatomic spacing from known samples allows us to identify layers 

and their crystal orientations.  

3.2.3 Dark Current-Voltage (I-V) 

Extracting electronic properties from semiconductor-based devices is somewhat 

challenging. This is why, several methods exist for extracting, contact resistance and 

barrier heights. We chose to use Cheung’s analysis and the Cox-Strack method 

(CSM) to find the barrier heights and contact resistivity, respectively. 
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3.2.3.1 CSM 

A well-known method for extracting contact resistivity is the CSM. This method is 

based on constructing different contacts surface different areas on the same substrate 

such that one is able to isolate the contact term in the total resistance. The total 

resistance is assumed to be a combination of 3 resistors connected in series. Thus, 

the total resistance can be expressed as such: 

𝑅𝑇 = 𝑅𝐶 + 𝑅𝑆 + 𝑅0 

(3.14) 

 

Figure 3.5 On the left we have a substrate with differently sized contacts on the top and on the bottom, there is 

an ohmic contact (drawn by my friend, Loay Akmal). On the right we have the electrical schematic of the 

device. The electric field is found to spread throughout the substrate in a conic-like fashion. The lower contact 

must be ohmic such that its resistance is not current dependent. 

Where RS is the spreading resistance of the substrate, which was based empirically 

on electrolytic tank measurements [76]: 

𝑅𝑆 =
𝜌

𝜋𝑑
𝑎𝑟𝑐𝑡𝑎𝑛

4𝑡

𝑑
 

(3.15) 

𝑅𝐶 =
𝜌𝐶

𝜋𝑑2/4
=

𝜌𝐶

𝐴𝑟𝑒𝑎
 

(3.16) 
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and R0 is the residual resistance which is composed of the resistance of that which is 

neither contact nor substrate. This quantity (R0) is assumed to be contact and 

substrate independent and to be constant. The method was first devised for ohmic 

devices such that RT could be extracted from the linear I-V measurement. On the 

other hand, for rectifying contacts RT would be hard to extract. Some researchers 

[77] would take a linear regression of the I-V curve at several voltages to 

approximate RT. However, there is a more methodological manner by which we can 

extract RT, which is using Cheung’s analysis. This was dubbed “Expanded CSM” 

[78]. In Cheung’s analysis, the resistance is found by taking the derivative of the 

potential with respect to the natural logarithm of the current and extracting the slope. 

Starting from the diode equation: 

𝐼 = 𝐼𝑠 [exp (
𝛽(𝑉 − 𝐼𝑅)

𝑛⁄ ) − 1], 𝛽 = 𝑞/𝑘𝐵𝑇 

(3.17) 

When we are looking at forward bias of 𝑉 ≥ 3𝑘𝑇/𝑞, we may approximate the current 

as such: 

𝐼 ≅ 𝐼𝑠 exp (
𝛽(𝑉 − 𝐼𝑅)

𝑛⁄ ) 

(3.18) 

𝑉 ≅ 𝐼𝑅 +
𝑛

𝛽
ln(𝐼) + 𝑛𝜙𝐵 − 𝑙𝑛𝐴𝐴∗𝑇2 

(3.19) 

𝑑𝑉

𝑑𝑙𝑛𝐼
≡ 𝐼

𝑑𝑉

𝑑𝐼
= 𝐼𝑅 +

𝑛

𝛽
 

(3.20) 

where n is the ideality factor. Then, one plots (dV/dlnI vs I) where the slope will 

correspond to the resistance of the device. Then, we go back to the CSM and repeat 

the process for each contact to plot RT vs 1/Area. As an example of the analysis, we 

show the steps for the test structure for Al/(1.3 nm)LiF contact on an n-type Si 

substrate of resistivity ~2.3 𝛺𝑐𝑚; first we measure the current response:  
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Figure 3.6  The I-V of 8 circular  contacts of diameters 0.8mm to 3.5mm. 

Next, we take the derivative of V with respect to I then multiply by I, since it is 

mathematically equivalent to taking the derivative of V with respect to the natural 

logarithm of I, and plot the result vs I: 

 

Figure 3.7 the first step of the analysis where dV/dlnI is computed and plotted versus the current, I. 
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As can be seen for ohmic contacts, such as the Al/(1.3nm)LiF on an n-Si substrate, 

the dV/dlnI vs I y-intercept is almost zero (Figure 3.7). The difference between 

considering whether the contact is ohmic or not can be quantified by this step, since 

we can always apply a linear regression to any set of points. In the last step, we plot 

RT-RS vs 1/Area such that : 

𝑅𝑇 − 𝑅𝑆 = 𝑅𝐶 + 𝑅0 

𝑅𝑇 − 𝑅𝑆 =
𝜌𝐶

𝜋𝑑2/4
+ 𝑅0 

(3.21) 

As can be seen from Figure 3.8, the plot is linear when plotted according to (3.21). 

Such analysis (calculating R using the diode equation) could be applied to ohmic 

contacts, as well, and will produce extremely small n values. 

In an error analysis paper that used finite-element analysis, it was  shown that at low 

contact resistivity interfaces, the CSM overestimates 𝜌𝐶  [76]. The paper also 

developed a different expression for the spreading resistance and suggested some 

guidelines to reduce the error in extracting  𝜌𝐶 . One of the guidelines can be 

summarized as: make the resistivity of the substrate as low and comparable to  𝜌𝐶  as 

possible. Since in this region, the 3 series resistors model is valid. When  𝜌𝐶 ≅

0.1 𝜌𝑤𝑡, the error is in  𝜌𝐶  is less than 5% for the original CSM expression for 

spreading resistance. Thus, we moved to using 200 μm thick  n-Si wafers with 

~0.8 𝛺𝑐𝑚 resistivity (thinner and less resistive wafers). 
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Figure 3.8 On the right, we have the total resistance calculated from the previous step, while on the left we 

remove the calculated spreading resistance from each contact correspondingly. 

 

3.2.3.2 Barrier Height Measurement 

Although there are other techniques such as capacitance-voltage measurements and 

spectroscopy-based methods, we can use I-V measurements to extract the barrier 

height as well, which requires a simpler setup. One could use Cheung’s analysis for 

extracting the barrier height, as well. Starting from the diode equation, we extract the 

resistance, by taking the derivative of V as shown in CSM, and n from the dV/dlnI-

I curve (Note: J and I may be used interchangeably in this analysis). Then we define 

a function H(I): 

𝐻(𝐼) ≡ 𝑉 − (
𝑛

𝛽
) 𝑙𝑛(

𝐼

𝐴𝐴∗𝑇2
) 

(3.22) 

Such that 

𝐻(𝐼) = 𝐼𝑅 + 𝑛𝜙𝐵 

(3.23) 
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Where we plot H vs I to extract R again and the intercept will be 𝑛𝜙𝐵where we have 

found n from the previous plot. The consistency of the analysis can be tested by 

comparing the first R with the second. For some reason, extracting R from JdV/dJ 

plots is more consistent than the one extracted from dV/dlnI plots, although they 

should be mathematically identical (Figure 3.9). As an example, we apply the 

analysis to the Ag/3nm of LiF/n-Si contact having the structure shown in Figure 3.5: 

 

Figure 3.9  As can be seen from the computed derivatives, the difference is negligible. However, both plots 

provide slightly different resistance values along with different ideality factors. The effect of the different 

ideality facts can be seen in the H(J) plot. 

Comparing both models, we can see both are almost identical to the experimental 

data (Figure 3.10). However, since we are modelling for 3 numbers simultaneously 

(R, n, and 𝜙𝐵) we opt for the more consistent model, that is, model 1, whose values 

are: R = 6.61Ω, 𝑛 = 1.8, and 𝜙𝐵 = 0.53 𝑒𝑉. The high ideality factor indicates that 

a mechanism other than TE is active [79].  
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Figure 3.10 The difference in computed R for JdV/dJ is 0.0071 Ω. For dV/dlnJ it is 0.1184 Ω. thus, we use the 

ideality factor produced by the first method. It should be noted that plotting H(J) or H(I) does not cause a 

difference. Using the results of the analysis using 2 different derivatives show small differences. Model 1 used 

JdV/dJ, while model 2 used dV/dlnJ. 

3.2.4 1-Sun and External Quantum Efficiency (EQE) 

The 1-sun simulator is a device that mimics the operating environment of solar cells 

by placing the sample cell under a source with the optical spectrum of the sun having 

an intensity of 1 kW/m2. The sample cell is put under such illumination and a bias 

voltage scan is  applied to find the open-circuit voltage (VOC) and its current 

response. 

EQE 

Due to the fact that the 1-Sun simulator retrieves current values, it needs to be 

corrected for the area to express our results in terms of current density. The main 

method to do so is through EQE measurements. Thus, we can retrieve the correct 

short circuit current density and calculate the correct efficiency of our samples. 

EQE is defined as the ratio between the generated charge carriers that left the solar 

cell and incident photons [80].  EQE may also indicate which recombination losses 

are limiting the performance of the solar cell, where the  UV/blue region is mainly 

affected by the front side, while the red/IR region is affected by the rear side . 
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CHAPTER 4  

4 RESULTS & DISCUSSION 

4.1 Experimental Results 

Based on the observations done over the past decades, it is evident that an IL intended 

for the enhancement of current across the MS interface should possess certain 

features: 

1. High Ionicity on Phillips’ scale. 

2. Large band gap. 

3. Low defect formation energy. 

4. Nanoscopic. 

Accordingly, we decided to explore the applicability of thermally evaporated sodium 

chloride (NaCl) and sodium fluoride (NaF) as prospective ILs for c-Si solar cells.  

Under proper optimization (which is outside the scope of this thesis), these materials 

could prove more economic due to their abundance in nature, especially NaCl. The 

preemptive venture into tackling the abundance issue reveals itself in the solid-state 

battery industry where research is partially dedicated to exploring sodium as a 

replacement for lithium [81]–[83] . 

4.1.1 XRD 

For XRD measurements, we used the Rigaku Ultima-IV X-ray diffractometer which 

possesses automatic alignment for grazing angle analyses. Thin films of NaCl and 

NaF; of varying thickness between 5-100 nm, were deposited on c-Si (Fz (100), DSP, 
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thickness 200 µm) and glass substrates, by thermal evaporation at room temperature. 

NaCl or NaF powder (99.99%, pure) were used as the source material.  

 

Figure 4.1 XRD results of NaCl deposited on a clean Si wafer. For two thicknesses we can see certain spikes 

corresponding to the NaCl. However, for the 20nm, there is practically only one peak that corresponds to the 

200 direction. 

The base pressure was 1-5×10-6 Torr. The c-Si wafers were cleaned by RCA/RCA2 

followed by HF dip before loading into the thermal evaporation system. XRD 

diffraction revealed that the 20 and 100 nm thick NaCl (Figure 4.1) and 100 nm NaF 

(Figure 4.2) exhibit single peaks in the (200) direction for NaCl (at 32°) and [100] 

for NaF (at 39°). Samples with layers of thicknesses lower than 20 nm did not show 

peaks other than that of the substrate. This does not necessarily mean that 20 nm is 

the threshold at which the layer becomes crystalline. For NaCl, another group made 

the same observation that only a single peak exists, at least for layers of 100nm or 

below [84].  
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For the silicon substrate we can see that the silicon peak dominates but there are other 

peaks around angles 62 and 67. We could conclude it belongs to the NaCl layer,  

however, the same peaks appear for the NaF layer (Figure 4.2). As for the peak at 33 

degrees, it is referred to as the Si (200) forbidden peak. The origin of its occurrence 

is most likely that the sample has a non-zero in-plane angle [85]. It is interesting to 

note that in the case of not applying HF, those peaks (at 62° and 67°) were stronger 

and other small peaks appeared.  

 

Figure 4.2 XRD results for 100 nm NaF on different substrates. It can be seen that in the case of glass substrate 

and not applying HF does not cause the peak to differ much in strength. 

The HF/no HF comparison tells us the substrate's crystallinity boosts the crystallinity 

of our layer, since without applying HF, NaF is being deposited on amorphous silica. 

This may be relevant, later. 
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4.1.2 Dark I-V measurements 

We prepared circular contacts of the same radius using shadow masks. The ILs and 

metals were deposited without breaking vacuum under 1 μTorr on 200 μm thick DSP 

n-Si <100> with resistivity of approximately 0.8 Ω.cm. In the first set of experiments, 

we fixed the IL and changed the metals and in the other we varied the IL. In another 

set of experiments, we extracted the contact resistivity using CSM for LiF, NaF, and 

NaCl IL capped with Al. Finally, we verify the selectivity qualitatively by changing 

the majority charge carrier in the substrate.  For the first set of experiments, It can be 

seen from Figure 4.3 that adding LiF effectively removed the pinning effect observed 

for the Metal/Si contacts (i.e., SBH now depends on 𝜙𝑚). 

 

Figure 4.3 IV measurement of Al/LiF/Si, Ag/LiF/Si,  and Au/LiF/Si where the contact diameter was 0.6mm for 

the Ag and Au contacts and 0.8cm for the Al contact. The higher reverse current in the case of Ag/NaF is 

indicative of a lowered barrier. After forward bias of 0.6V the current becomes dependent on the system’s 

resistance. 

For the Al/LiF contact, we deposited 1.3 nm only to have an effective workfunction 

(~3 eV at this thickness) comparable to the other contacts(~3.8 eV). In literature, the 

success of LiF as an IL in c-Si solar cells has been attributed to different causes. The 

main three hypotheses, summarized by J. Bullock et al. [86] regarding the 

enhancement of current due to adding LiF as an IL are as follows: 

1. Lithium chemically dopes the surface of the semiconductor, in this case Si. 



 

 

59 

2. Protection from Al at the surface of Si. 

3. The extremely low work function value of the Al/LiF interface. 

For the first hypothesis, it was concluded that it could not be the case as the LiF layer 

was shown to be stable through STEM imaging [86] such that Li did not diffuse in 

the Si substrate. S. Wan et al. also have shown chemical inertness of the LiF/Si 

interface [87]. The second hypothesis relies on the MIGS explanation; as LiF is 

acting as a region of no electrons, the gap states of Si cannot be filled by the Al 

electrons since they are screened by the distance. The third hypothesis goes in line 

with R. Schlaf et al.’s experimental results and others [63][26]. Although Zhengyi 

Sun et al. [26] showed that the effective work function of coinage metals (Cu, Ag, 

Au) was 3.8 𝑒𝑉 upon depositing 3nm of LiF, the barrier height of such contacts is 

actually different. This shows that that the effective work function is not the only 

cause for enhanced electron transport across such interface. It must be a combination 

of reduced MIGS at the interface and an effective work function and potentially in 

combination with other surface parameters, like orientation.  

On the other hand, when using Cheung’s analysis on the Au/LiF contact, it produced 

an ideality factor of approximately 0.2 which led to a high barrier height of 1.26 eV, 

which is somewhat unreasonable. Using the formula relating the BH to the saturation 

current density: 

𝜙𝐵 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐴∗𝑇2

𝐽𝑠𝑎𝑡
) 

(4.1) 

the BH for the Au/LiF contact was found to be 0.663 eV, while for Ag/LiF it is 0.55 

eV (0.584 eV using Cheung’s analysis). The discripancy between Cheung’s analysis 

and the reverse saturation current is most probably due to the small number of data 

points in the forward bias region such that the numerical derivative was not well 

defined, and not accounting for the image-effect that diminishes the barrier in the 

reverse bias. 
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Figure 4.4 Using the same structure as in the previous figure, we compare the performance of NaF with LiF for 

Ag contacts on n-Si. 

Next, we compare the performance of using our proposed material with using LiF. 

Although LiF has the largest known bandgap, both experimentally and numerically, 

NaF still outperformed it in lowering the barrier height at the Ag/n-Si interface 

(Figure 4.4). The outperformance can be attributed to the slightly higher ionicity of 

NaF on the Phillips’ ionicity scale. 

 

Table 1 Extracted effective SBH of different contacts on the same substrate (n-Si). 

Contact Structure Barrier Height  (eV) 

Bare Ag 0.698 

Ag/LiF 0.584 

Ag/NaF 0.472 
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4.1.3  Charge-Carrier Selectivity 

Next, we show the charge-carrier selectivity by comparing the current response of 

the contact on substrates of different doping type. Due to the extremely high 

ionization energy (VBM) of the alkaline halides, we expected NaF to be electron 

selective such that when the substrate has holes as the majority charge carriers it, the 

current response becomes rectifying. Our expectation is justified by the large band 

gap that such material possess such that the tunneling probability is diminished for 

holes and due to the unpinning there will be a thermionic barrier that the holes must 

overcome. This naturally leads to valence band offset larger than that of the 

conduction band offset, which primarily cause the selectivity. This is visible in 

Figure 4.5. 

 

Figure 4.5 J-V measurement of Al/NaF( 5nm) on different substrates. It can be seen that for the p-Si substrate, 

there is a saturation current corresponding to an effective barrier height of 0.619eV. However, one cannot use 

the TE model to quantify the barrier across the Al/NaF/p-Si interface. 

Following Sze’s use for Richardson’s constant; for the p-type substrate we used a 

value of 30, while for the n-type substate whose orientation was <100>, we used a 

value of 120 in order to deduce the barrier height from the forward direction current. 

The barrier deduced is really an effective one, which reveals itself in the ideality 
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factor deviating from 𝑛 = 1 [79]. This is a sign that the barrier is field-dependent 

and that tunneling is occurring alongside with TE, which is expected. 

4.1.4 Contact Resistivity Measurement 

We used CSM to extract the contact resistivity of Al/IL/n-Si contacts (IL= LiF, NaF, 

NaCl) by making contacts with different radii. From Figure 4.6, we Note that NaF 

and NaCl outperformed LiF in the range of thicknesses tested, which were calibrated 

by spectroscopic ellipsometry with a resolution of ±2 Å. We may conclude that the 

size of the bandgap is not the only factor causing the IL to have high electrical 

performance. This is because, NaF’s bandgap is approximately 11.4 eV, while for 

NaCl and LiF, it is 9.5 eV and 13.6-14.2 eV, respectively [88]. 

 

Figure 4.6 The extracted contact resistivity using the CSM analysis for different IL thicknesses of NaF, NaCl, 

and LiF. 

The dependency of contact resistivity on thickness can be understood from the 

transport mechanism, which is a combination of TE and FNT. The TE model tells us 

how many electrons have energy enough to move across an energy barrier. The 

tunnelling barrier tells us the likelihood of an electron passing a barrier, depending 
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on its energy. Thus, the current across the contact should, approximately, be the 

likelihood of electrons that passed the energy barrier to pass the tunnelling barrier: 

𝐽𝑡𝑜𝑡 ≅ Θ𝐽𝑇𝐸  

Where Θ is an overall tunnelling probability, which is inversely proportional to 

exponent of the root of the thickness of IL (by defining the electric field in the FNT 

expression as 𝐸 = 𝑉/𝑑), for a given bias voltage. This is a simplistic view of electron 

transport across such junctions. However, it qualitatively accounts for the behaviour 

seen in Figure 4.6, between 1-10 nm. After this thickness range, one could model 

such layers as capacitors [5], [86]. 

4.1.5 EQE and 1-Sun Results 

Finally, we try utilizing the IL in a n-Si solar cell at the backside as shown in Figure 

4.7. The front side’s optimization was done by another team, where SiNx passivation, 

texturing, and Boron surface doping were implemented with Ag/Al paste front 

contacts. 

 

Figure 4.7 Schematic of the solar cell structure. At the front, we have surface doping, creating a thin p+ layer 

passivated with SiNx and metal capped with silver. At the back, we deposited the IL dubbed ESL short for 

electron selective layer. 

The EQE results shown in Figure 4.8 revealed almost identical behavior throughout 

the spectrum for the three IL, which was expected. In the inset graph, we can see 

how the cell with NaF had higher EQE, fractionally, throughout the spectrum except 

for the UV region. Whereas NaCl was identical to LiF, it showed slightly lower 
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efficiency in the IR region indicating slightly higher surface recombination relative 

to both NaF and LiF. 

 

Figure 4.8 EQE results for the champion cells with different layers implemented at the backside capped with Al 

as the metal contact. 

Table 2 Results for the n-type solar cells after the EQE corrections. 

Contact Voc (mV) Jsc (mA/cm2) FF (%) Efficiency (%) 

NaCl (2 nm) 581.4 35.48 78.7 16.23 

 581.2 35.63 79.1 16.38 

NaF (~1.5nm) 591.2 36.07 81.13 17.30 

 591.2 35.85 79.22 16.79 

NaF (1.5 nm) 586.3 35.40 78.59 16.31 

 591.3 35.88 78.11 16.57 

LiF (1.8 nm) 591.3 35.44 78.84 16.52 

 591.3 35.72 80.62 17.03 

 

In Table 2, the results of the sample cells are summarized, after the EQE correction. 

Since deposition was done on textured surfaces, the optimum thicknesses did not 
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exactly correspond to the ones from contact resistivity measurements. Figure 4.9 

shows the current density response of the champion cells for each layer, ceteris 

paribus. Given that the cells based on LiF were reported to be at above 19% efficient 

and could go up to 23% efficient with proper passivation, and that NaF was slightly 

better than LiF in our tests, NaF should perform better under the same circumstances. 

 

Figure 4.9 The J-V results of the solar cells, having average area of 2x2cm2, with different ILs after the EQE 

correction of the short circuit current density. 

4.2 Discussion 

The XRD indirectly shows how after a certain thickness the ionic crystals become 

crystalline. This is quite interesting as the crystals do not need a crystalline substrate 

for the atoms to arrange themselves after a certain thickness. This is not seen in most 

evaporated solids. This further corroborates Frenkel’s analysis of ionic surfaces. 

Since J. Bullock et al. [6] has shown, indirectly, that 3 of I-VII crystals act almost 

identically in the IL regime, we may start with LiF as it has been studied the most 

among the ionic crystals as an IL since L.S. Hung’s work [4]. Based on a band gap 



 

 

66 

of 12-14.5 eV [4], [87]–[89] and ionization energy of 11.3 eV [63] , we may draw 

the band diagram of LiF [100] and compare it with what happens upon contacting 

another crystal. 

 

Figure 4.10 Schematic of the band diagram of the Al/LiF/n-Si interface. 

In Figure 4.10, outside the metal, we see the experimentally demonstrated lower 

work function of Al/LiFx [63] for 3 nm coverage. It has been attributed to a dipole 

layer [63][4][5]. This is true to an extent, however calling it a dipole layer is 

misleading since a dipole layer is an electrostatic configuration that will not continue 

to exist if time is allowed to pass. Since the interface is chemically inert for LiFx/n-

Si [87], the CBM of Si must remain at 4.05 eV below vacuum at the interface. 
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Figure 4.11 The IV result of Al/(2nm)NaCl/n-Si. The device structure is similar to the CSM structure where the 

front contact is a circular contact of radius 1.7mm and the back contact is fully covered and ohmic. 

This causes accumulation to occur to an extent that Si acts as degenerately doped Si 

near the interface. This is justified by the range over which such contacts (ionic 

crystals as IL) are Ohmic in the reverse bias, as in the case of Al/2nm NaCl where 

the contact was ohmic up to -4 V (Figure 4.11). Now, in this case, on either side of 

the IL the CBM should be below the FL such that the band diagram is symmetric 

about the contact. Analytically, it was shown that for a FN-type barrier the tunnelling 

probability is the same whether the electron is leaving the emitter or entering it from 

vacuum [90], which may be generalized for smooth barriers. This corroborates the 

picture that when tunnelling is the dominant mechanism of current transport across 

the contact, the device appears ohmic. This is because the contact, after a fractional 

bias, passes more electrons than the substrate can pass. Furthermore, if the CBM 

were to be above FL by anything below 0.3 eV (𝜙𝐵 ≤ 0.3𝑒𝑉) it would not have 

shown in the analysis due to the parameters under which the current was measured. 

Next, in the case when the metal is Ag and Au (higher work function), we can look 

at the interface as being composed of two cascading barriers, that of the IL and the 

band bending caused by the mismatch in FL before contact. The theoretical electron 

SBHs for Ag (𝜙𝑚~4.6 𝑒𝑉) and Au (𝜙𝑚~5.3 𝑒𝑉) [26]  is 0.55 𝑒𝑉 and approximately 
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1.25 𝑒𝑉, neglecting the image effect. However, by the inclusion of LiF or similar 

ionic crystals, the work function of the surface becomes 3.8 eV, approximately. 

Although Au and Ag possess the same effective work function upon depositing the 

same thickness of LiF, their J-V response is not the same which implies that the 

inherent workfunction of the metal somehow acts as a parameter, since the difference 

between Ag and Au’s electronic densities is negligible. This further validates the lack 

of FLP at the interface. 

In terms of quantifying observations, the most effective theories are still TE and 

FNT, where the former ignores the exact origin of the barrier height, and the latter 

simplifies its shape to that of a triangle (ignoring the image-effect). In the case of 

TE, one can always model any rectifying contact and establish an effective barrier, 

which would encompass other conduction mechanisms that partially appear in the 

ideality factor (n). If n does not deviate much from unity, TE is enough to effectively 

characterize the MS interface [79].  

As for FNT, R. G. Forbes [39] pointed out that a good portion of the literature is 

neglecting the image-effect correction (Schottky-Nordheim tunnelling (SNt)) 

presented in the fifties [21], which was shown to be of significance, especially in 

nonplanar emitter surfaces.  Although the difference between SNt and FNT amounts 

to a correction factor [37], this correction factor is electric field-dependent in case of 

nonplanar emitters. A perfectly planar surface is quite rare. The correction factor if 

not accounted for, will convolute the measured barrier. This may be one of the 

causes, on top of surface morphology and measurement techniques, as to why some 

report different 𝜙𝑀 and 𝜙𝐵 values for metals and interfaces of similar crystallinities 

and bulk properties, respectively, in the literature. 

The manner in which the tunnelling barrier and the thermionic barrier are resolved 

is usually done through temperature dependent IV measurements. As the temperature 
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goes down, TE is suppressed while the tunnelling current remains constant [77]. 

Unfortunately, the system was not available for further analysis. 

 

Figure 4.12 A Schematic of the band structure an electron perceives in a single direction in a periodic structure. 

A. Vacuum, no structure. B. A metal where the band gap is of the order of thermal voltage or less. C-E Group 

IV and binary crystals. F. Ionic crystals, characterizable by different phenomena including negative electron 

affinity, i.e., the CBM is above  vacuum level. Note: the FL is not always the same distance from vacuum, as it 

can vary from 2-6eV. At the top, circles signify degree  of localization near the parent ion. At the bottom, we 

see the scale of  degree of FLP. 

The studies done on metal/non-metal contacts show the trend of moving towards the 

SL with increasing bandgap/ionicity through contact resistivity measurements and 

their functionality as Si-based solar cells [5], [8], [10], [11], [14], [35], [91]–[94]. 

Schlaf et al. and others have also revealed that the MI interface exhibits relatively 

lower metal work function. One can summarize the observations done throughout 

the decades as shown in Figure 4.12. We see how when we move from vacuum to a 

structure of very weak periodic (practically, most metals), the continuum of states is 

not fully accessible (Chapter 2). As we go from left to right, the periodic potential 

goes from non-existent, in vacuum, to extremely strong, in ionic crystals, as evident 
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from the huge bandgap. Exact accounting for the different weights of interface 

mechanisms is almost impossible, right now. This is due to errors in the metal work 

function extraction, different topology of surfaces studied in literature over time, and 

unaccounted substrate effects that include substrate thickness and resistivity. 

However, it is evident that for ionic crystals, unlike Si and Ge, electrons are well 

localized such that, at the surface, the ions become freer to move, instead of 

generating extra electronic states in the forbidden region as a response to lattice 

termination. Here is a set of strategies that will enhance MIS-based contacts: 

Frenkel/Gibbs picture: for ionic crystals, it is evident that band bending is 

occurring because of the difference in the Gibbs free energy of defects allowing ions 

to move more freely at the surfaces and acting as dipoles in the sub-nanometer 

regime. If the moving ions are participating in the conduction, then using impure 

(doped) ionic crystals will increase the density of defects hence enhancing the field 

effect present in these layers[95]–[97].In addition to this, thermodynamically, 

defects generated by high substrate temperature may be partially frozen by capping. 

Thus, experimenting with substrate temperature during deposition may reveal 

contacts with superior electronic properties. 

Bardeen/Tersoff/Heine picture: As MIGS qualitatively explains the observed 

partial depinning in silicides and germanides, and almost full depinning in the case 

of Bi/Si and Bi/Ge, the use of semi-metals could be used to further minimize the 

influence of gap-states in MIS contacts. MIGS could also be used to view IL as a 

screen [95], [97] thereby lowering the matching DOS that would pin the FL of Si 

near CNL. 



 

 

71 

 

CHAPTER 5  

5 CONCLUSION 

In conclusion, we found that adding an ultrathin layer of NaF or NaCl between Si 

and metals unpins the FL from around CNL such that the barrier perceived by the 

electrons is dependent on the metal work function. We attribute this to their ionic 

nature such that on the one hand they distance the metal from silicon, while, on the 

other hand, they possess no electronic states that matches that of silicon’s unoccupied 

gap states to pin the FL. From Frenkel’s analysis, the ions themselves spread at the 

surface of ionic crystals to achieve neutrality with bulk as opposed to forming 

dangling bonds to be filled in the case of covalent solids. This is another reason why 

such crystals have poor passivation quality.  

Due to these layers’ band structure, they act as electron selective layers, in the sense 

that they diminish the passage of holes by having a much larger tunnelling barrier. 

To this end, we utilized these layers as rear planar contacts in an n-Si solar cell and 

compared their performance to that of an optimized cell with LiF in their stead. NaF 

outperformed LiF by a slight margin (0.3%), ceteris paribus, achieving a power 

conversion efficiency of 17.3%. Since the enhancement was in the short circuit 

current density and fill factor, coupling the use of  NaF with a better passivation at 

the front and optimized partial contact coverage at the back side offers guaranteed 

routes for improvement.    

Finally, since we proposed and tested NaF and NaCl as ILs based on the experiments 

and several existing models explaining some of the isolated features of solid-state 

surfaces, and their success in lowering the contact resistivity of Metal/Si contacts up 

to 3 to 4 orders of magnitude without sophisticated contact strategies, we propose a 

set of materials that can also function as IL in contact design where contact resistivity 
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is minimized: beryllium oxide (BeO), strontium fluoride (SrF2), and silver iodide 

(AgI). Qualitatively, any transparent crystal would partially unpin the FL as an 

ultrathin IL. 

Choosing the parameter that dictates which ionic crystal would outperform the other 

is tricky. Although NaF has a smaller bandgap, it outperformed LiF as an IL in terms 

of current density in rectifying contacts and contact resistivity in ohmic contacts, 

which tells us that the size of the bandgap is but a parameter for superior contacts. 

The only scale that consistently correlated with the reported contact resistivity 

values, both in this thesis and in literature, was the ionicity scale. It is even correlated 

with the degree of pinning. Unfortunately, Philips’ scale lacks generality since it was 

made for binary crystals without accounting for d or f valence electrons. This limits 

its usability in predicting the performance of other more complex ionic crystals in 

the IL regime, e.g., lithium niobate’s ionicity is undefinable (in Philips’ model), 

because niobium has d electrons, and the crystal is not composed of a binary 

compound. 

As for a strategy, the contact should incorporate  an optimized combination of both 

pictures (the ionic surface and MIGS). Combining both the MIGS picture and the 

Frenkel picture, we are led to conclude that depositing a semi-metal, with an 

appropriate work function, between the IC and the metal is the best strategy in terms 

of minimizing the contact resistivity of the contact. Thus, for n-type semiconductors: 

Al/semi-metal/IC/S is potentially the ultimate recipe for minimal resistance, where 

the thickness of the semi-metal is on the order of 10 nm (as they are more resistive 

than metals). However, the thickness should be enough to completely eliminate the 

influence of the MIGS from partially pinning the FL. 

As an example, for n-Si, adding a few nanometers of Bi between  Al and the ionic 

IL should further reduce the MIGS at the interface, while unpinning the FL through 

the mobile ions in the IC.  Implementing this exact combination of  Al/Bi/IC/S may 

have  varying outcomes for different c-Si orientations, not to mention other 
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semiconductors. This is mainly due to how different layers have varying passivation 

effects depending on the substrate, which is beyond  the scope of this thesis.
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